摘要:
A mixer circuit is configured using a CMOS transistor (800), comprising a p-channel transistor (840A) and an n-channel transistor (840B) in which semiconductor substrates (810A, 810) with at least two crystal planes and a gate insulator (820A) formed on at least two of the crystal planes on the semiconductor substrate are comprised and the channel width of a channel formed in the semiconductor substrate along with the gate insulator is represented by summation of each of the channel widths of channels individually formed on said at least two crystal planes. Such a configuration allows reduction of 1/f noise, DC offset generated in output signals due to variation in electrical characteristics of a transistor element, and signal distortion based on the channel length modulation effect.
摘要:
A gate insulating film is formed using a plasma on a three-dimensional silicon substrate surface having a plurality of crystal orientations. The plasma gate insulating film experiences no increase in interface state in any crystal orientations as compared with tat in Si (100) crystal orientation and has a uniform thickness even at corner portions of the three-dimensional structure. By forming a high-quality gate insulating film using a plasma, there can be obtained a semiconductor device having good characteristics.
摘要:
The present invention relates to a semiconductor device comprising an insulation film consisting of a fluoridation carbon film that has been subjected to thermal history of 420° C. or lower. The feature of the present invention is that an amount of hydrogen atoms included in the fluoridation carbon film is 3 atomic % or less before the fluoridation carbon film is subjected to the thermal history.
摘要:
An insulating film is formed as a pore-wall protective film (103) on pore walls in a porous layer (102) by the use of a mixed gas plasma of a noble gas and an insulating film forming gas generated by microwave excitation. As a result, the pore-wall protective film can have film properties as a protective film.
摘要:
A method for fabricating a semiconductor device including GaN (gallium nitride) that composes a semiconductor layer and includes forming a gate insulating film, in which at least one film selected from the group of a SiO2 film and an Al2O3 film is formed on a nitride layer containing GaN by using microwave plasma and the formed film is used as at least a part of the gate insulating film.
摘要翻译:一种制造半导体器件的方法,该半导体器件包括构成半导体层并包括形成栅极绝缘膜的GaN(氮化镓),其中在氮化物层上形成选自SiO 2膜和Al 2 O 3膜中的至少一种膜 通过使用微波等离子体形成含GaN的GaN,并且将形成的膜用作栅极绝缘膜的至少一部分。
摘要:
On a surface of a semiconductor substrate, a plurality of terraces formed stepwise by an atomic step are formed in the substantially same direction. Using the semiconductor substrate, a MOS transistor is formed so that no step exists in a carrier traveling direction (source-drain direction).
摘要:
In a semiconductor device, the degree of flatness of 0.3 nm or less in terms of a peak-to-valley (P-V) value is realized by rinsing a silicon surface with hydrogen-added ultrapure water in a light-screened state and in a nitrogen atmosphere and a contact resistance of 10−11 Ωcm2 or less is realized by setting a work function difference of 0.2 eV or less between an electrode and the silicon. Thus, the semiconductor device can operate on a frequency of 10 GHz or higher.
摘要:
An accumulation mode transistor has an impurity concentration of a semiconductor layer in a channel region at a value higher than 2×1017 cm−3 to achieve a large gate voltage swing.
摘要:
By hydrogen-terminating a semiconductor surface using a solution containing HF2− ions and an oxidant, the hydrogen termination can be quickly carried out. In this case, the semiconductor surface is silicon having a (111) surface, a (110) surface, or a (551) surface.
摘要:
An organic EL light emitting element is provided with a conductive transparent electrode 3, a counter electrode 8 opposing the conductive transparent electrode 3, an organic EL light emitting layer 6 provided between the conductive transparent electrode 3 and the counter electrode 8, an insulating protection layer 9 provided to cover at least the organic EL light emitting layer 6, and a heat dissipating layer 11 which is brought into contact with the insulating protection layer 9. The conductive transparent electrode has an ITO film including at least one of Hf, V and Zr at least on the surface part on the side of the organic EL light emitting layer 6, and the insulating protection layer 9 includes a nitride film having a thickness of 100 nm or less.