Abstract:
The semiconductor device includes a blocking layer 12 formed on a substrate 10, an insulation film 14 formed on the blocking layer 12, and a fuse 22 formed on the insulation film 14. The blocking layer 12 is formed below the fuse 22, whereby the fuse is disconnected by laser ablation, and the laser ablation can be stopped by the blocking layer 12 with good controllability without damaging the substrate. The fuses to be disconnected can be arranged at a very small pitch, which can improve integration of the fuse circuit.
Abstract:
A uniform laser spot, such as from an imaged shaped Gaussian output (118) or a clipped Gaussian spot, that is less than 20 &mgr;m in diameter can be employed for both thin and thick film resistor trimming to substantially reduce microcracking. These spots can be generated in an ablative, nonthermal, UV laser wavelength to reduce the HAZ and/or shift in TCR.
Abstract:
The present invention provides a method and system for irradiating resist material from multiple target positions (150) on one or more IC chips (12) with individually directed laser output pulses (74, 94). In one embodiment, an IC (12), including one or more etch targets (104, 106) such as conductive links (72, 92), is coated with an etch protection layer (90) of photoresist material. Then, position data direct, toward multiple positions (150) on the photoresist material, individual laser output pulses (94) of predetermined parameters selected to expose the photoresist material. Because photoresist exposure requires less energy than link blowing, low-power UV lasers (120) can be employed, and their shorter wavelengths permit a smaller practical laser output spot size (98). Because the nonablative process does not generate debris, an optical component (148) can be brought within 10 mm of etch protection layer (90) to focus the laser output pulses (94) to a spot size of less than two times the wavelength of laser output (140). Thus, an advantage of this embodiment permits microcircuit manufacturers to decrease the pitch distance (28) between circuit elements (14). After the photoresist layer (90) is developed, the accessible etch target (92) can be etched to repair or reconfigure the IC device. In another embodiment, slightly higher UV power laser output pulses (74) can be employed to ablate an etch protection resist layer (70) so any type of etch protection coating such as nonphotosensitive resist materials can be utilized with substantial manufacturing and cost benefits. Etching of the accessible etch targets (60, 62) follows this process.
Abstract:
A laser system uses a broad-area high-power diode laser in cooperation with a nonimaging concentrator, or an unstable resonator semiconductor laser, to end pump a relatively thin, solid-state, highly doped lasant. The laser system generates a very high density of excited ions in the lasant mode volume to produce high peak power pulses having comparable magnitudes over a wide range of pulse repetition frequencies.
Abstract:
A laser system uses a high-power diode laser in cooperation with a nonimaging concentrator to end pump a relatively thin, solid-state, highly doped lasant. The laser system generates a very high density of excited ions in the lasant mode volume to produce high peak power pulses having comparable magnitudes over a wide range of pulse repetition frequencies.
Abstract:
A method of and an apparatus for drilling blind vias with selectable tapers in multilayer electronic circuits permit forming electrical connections between layers while maintaining quality and throughput. The method relies on recognizing that the top diameter of the via and the bottom diameter of the via, which define the taper, are functions of two separate sets of equations. Simultaneous solution of these equations yields a solution space that enables optimization of throughput while maintaining selected taper and quality using temporally unmodified Q-switched CO2 laser pulses with identical pulse parameters. Real time pulse tailoring is not required; therefore, system complexity and cost may be reduced.
Abstract:
A set (50) of laser pulses (52) is employed to sever a conductive link (22) in a memory or other IC chip. The duration of the set (50) is preferably shorter than 1,000 ns; and the pulse width of each laser pulse (52) within the set (50) is preferably within a range of about 0.1 ps to 30 ns. The set (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly link removal without stopping whenever the laser system (60) fires a set (50) of laser pulses (52) at each link (22). Conventional IR wavelengths or their harmonics can be employed.
Abstract:
A solution to an interference effect problem associated with laser processing of target structures entails adjusting laser pulse energy or other laser beam parameter, such as laser pulse temporal shape, based on light reflection information of the target structure and passivation layers stacked across a wafer surface or among multiple wafers in a group of wafers. Laser beam reflection measurements on a target link measurement structure and in a neighboring passivation layer area unoccupied by a link enable calculation of the laser pulse energy adjustment for a more consistent processing result without causing damage to the wafer. For thin film trimming on a wafer, similar reflection measurement information of the laser beam incident on the thin film structure and the passivation layer structure with no thin film present can also deliver the needed information for laser parameter selection to ensure better processing quality.
Abstract:
A simultaneously mode-locked, Q-switched laser is configured to prevent loss of mode lock during laser operation. A preferred embodiment prevents loss of mode lock by operating the laser between the Q-switched pulses with a residual level of laser power sufficient to maintain a mode-locked state. The residual laser power output can be blocked by a pulse picking device.
Abstract:
A specially shaped laser pulse energy profile characterized by different laser wavelengths at different times of the profile provides reduced, controlled jitter to enable semiconductor device micromachining that achieves high quality processing and a smaller possible spot size.