Abstract:
A method of inverse reinforcement learning for estimating reward and value functions of behaviors of a subject includes: acquiring data representing changes in state variables that define the behaviors of the subject; applying a modified Bellman equation given by Eq. (1) to the acquired data: r ( x ) + γ V ( y ) - V ( x ) = ln π ( y | x ) b ( y | x ) , ( 1 ) = ln π ( x , y ) b ( x , y ) - ln π ( x ) b ( x ) , ( 2 ) where r(x) and V(x) denote a reward function and a value function, respectively, at state x, and γ represents a discount factor, and b(y|x) and π(y|x) denote state transition probabilities before and after learning, respectively; estimating a logarithm of the density ratio π(x)/b(x) in Eq. (2); estimating r(x) and V(x) in Eq. (2) from the result of estimating a log of the density ratio π(x,y)/b(x,y); and outputting the estimated r(x) and V(x).
Abstract:
A tunable, all-optical, coupling method for a high-Q silica microsphere and an optical waveguide is disclosed. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powers up to 211 mW is observed and used to fine tune the microsphere-waveguide coupling. Microcavity displacements ranging from (0.61±0.13)-(3.49±0.13) μm and nanometer scale sensitivities varying from (2.81±0.08)-(17.08±0.76) nm/mW are obtained. Additionally, an apparent linear dependency of coupling distance on stem laser heating is achieved. Using these methods, coupling can be altered such that the differing and customizable coupling regimes can be achieved.
Abstract:
A method for performing 2-dimensional discrete Fourier transform of a subject image data to be performed in one or more digital processors includes performing 1-dimensional fast Fourier transform on each row of the subject image data and 1-dimensional fast Fourier transform on each column of the subject image, and performing a simplified fast Fourier transform processing on the extracted boundary image without performing column-by-column 1-dimensional fast Fourier transform by: performing 1-dimensional fast Fourier transform only on a first column vector in the extracted boundary image data, using scaled column vectors to derive fast Fourier transform of remaining columns of the extracted boundary image data, and performing 1-dimensional fast Fourier transform on each row of the extracted boundary image data. Then, fast Fourier transform of a periodic component of the subject image data with edge-artifacts removed and fast Fourier transform of a smooth component of the subject image data are derived from results of steps (b) and (c).
Abstract:
A method of forming a perovskite film is provided, the method comprising inducing a chemical reaction between a metal halide compound and methylamine (CH3NH2) gas. Specifically, the method includes: forming a metal halide film on a substrate; and exposing the metal halide film to the methylamine (CH3NH2) gas for inducing the chemical reaction between the metal halide compound and the methylamine (CH3NH2) gas to form a perovskite film. Post treatments can be carried out by adding a step of exposing the perovskite film to hydriodic acid (HI) gas and methylamine (CH3NH2) gas sequentially or simultaneously.
Abstract:
A device for moving a fluid with magnetic gear includes two first balls each having a shape of sphere, respectively fixed to a rotating first shaft through respective centers of the sphere, each of the first balls having a first magnetic dipole in a direction orthogonal to the first shaft; and a second ball having a shape of sphere attaching a blade structure thereon to move the fluid, fixed to a freely rotatable second shaft through a center of the sphere, and having a second magnetic dipole in a direction orthogonal to the second shaft, wherein the centers of the first and second balls altogether form an isosceles triangle with a vertex angle ψ being defined about the center of the second ball, satisfying ψ = 2 arcsin ( 1 3 ) ≈ 70.53 ° .
Abstract:
The present invention relates to novel tertiary alcohol derivatives substituted with aryl and trifluoromethyl, and optical isomers thereof. In addition, the present invention also relates to methods for the preparation and use as enantiomer recognition agent thereof. The present invention provides pharmaceutical composition and use as therapeutically active substance thereof.
Abstract:
The present invention relates to a method for screening a compound that inhibits secretion of toxins into host-cell cytoplasm by virulent bacteria using a needle type III secretion system. The compound of the invention is selected by screening for a compound which interacts with a loop region of the cytoplasmic domain of the membrane protein FlhB from Salmonella typhimurium or a paralog thereof. Compositions including the compound of the invention, use of the compound, and methods of treating disorders caused by virulent bacteria are also provided.
Abstract:
Provided is a method for controlled release of a chemical substance in vivo with femtosecond laser pulses. The method comprises a step of injecting into the body of a subject a liposome which is filled with the chemical substance and attached to metal nanoparticles. Then, a laser pulse train is applied to the liposome from outside the body with a constant or variable laser intensity, exposure time and time between exposures, thereby releasing a controlled amount of the chemical substance in the body from the liposome on a timescale fast enough to reproduce neural signaling.
Abstract:
Techniques are described for a charged particle optical apparatus that includes a loop of solid material that encloses a bore and a wire winding poloidally wrapped around the loop surrounding the bore. A current is applied to the toroidal winding generating a magnetic field inside the loop along a toroidal direction of the loop and generating magnetic vector potential within the bore. When charged particle(s) pass through the bore of the loop, the magnetic vector potential focuses the charged particles based on the focal point of the charged particle optical apparatus.
Abstract:
A device provides for delivery and control of extremely high peak-intensity femtosecond pulses of light. The device transmits pulses from a femtosecond laser to an endovascular location via a suitable optical fiber and controls the light intensity distribution at the site of surgery. The extremely high intensity enables the instantaneous ablation of material (e.g. calcified plaque) inside the blood vessel, with minimal damage to surrounding tissue.