Abstract:
This specification discloses apparatus and a method for producing a laminate material whether perforate or imperforate, the apparatus including a support frame having laminate take off means in the form of at least two conveyors having outwardly facing conveyor runs that are generally parallel to one another and carriage means arranged to travel about said laminate take off means to dispense one or more webs about said laminate take off means to form the laminate material in tubular form thereon and, in one embodiment, longitudinally severing the tubular formed laminate material to form a single layer of the laminate material.
Abstract:
The present invention provides a unitary run flat tire (RFT) reinforcement that is formed into a relatively rigid shape. The reinforcement is insertable into a mold for an RFT support and can maintain the needed structural rigidity for such insertion. Further, the invention provides an RFT support that is molded and includes the RFT reinforcement. The invention also provides a wheel assembly including a tire, a rim, and an RFT support between the rim and the tire, where the support includes the RFT reinforcement. The RFT support can have a colored indicator formed or subsequently applied thereto to indicate one or more attributes of the support.
Abstract:
A fiber reinforced plastic article is disclosed which include a liner, at least one single material fiber layer wound on the liner, and at least one composite fiber layer wound on the single material fiber layer. The at least one single material fiber layer and the at least one hybrid fiber layer are impregnated with resin.
Abstract:
A fiber reinforced plastic article is disclosed which include a liner, at least one single material fiber layer wound on the liner, and at least one composite fiber layer wound on the single material fiber layer. The at least one single material fiber layer and the at least one hybrid fiber layer are impregnated with resin.
Abstract:
An improved filament winding method and apparatus for fabrication of composite material products is based on a mechanism that rotates filaments around a non-rotating mandrel. The primary filaments in predetermined patterns tend to move on the mandrel and thus such filaments are fixed in position relative to the mandrel by over-wrapping them with secondary filaments applied over the primary filaments. The winding mechanism functions by rotating filament spools around a non-rotating mandrel rather than rotating the mandrel to pull the filaments onto the mandrel. The mandrel is axially translated through the center of the winding mechanism or the winding mechanism is translated over a stationary mandrel which is supported in such a manner as to provide for such translation.
Abstract:
The present invention relates to a method of manufacturing a part made of a composite material comprising reinforcing fibers embedded in a matrix made of a polymerizable and/or crosslinkable material, wherein: at least one composite layer (3) is deposited on a mandrel (2), the non-polymerized and/or non-crosslinked composite layer is coated with at least one protection layer (7) made of a hardenable material, the protection layer is hardened before polymerization and/or crosslinking of the composite layer. The invention also relates to a manufacturing device.
Abstract:
A braided insitu consolidated structure of fiber reinforced thermoplastic resin strands is formed by braiding the strands on a mandrel and then advancing the mandrel and the braided structure as it is formed continuously through a heating zone to heat the resin to a flowable condition then cooling the structure as it leaves the zone. Pressure may be applied or developed against the braided structure during its formation.
Abstract:
A fiber-reinforced plastic article having first, second, and third cylindrical portions is disclosed. A helical braid is applied along a first cylindrical portion as a first cylindrical sleeve which conforms to and encases the outside surface of said first cylindrical portion. The second cylindrical portion is passed through the filaments forming the braid and the braid is collapsed into a first, substantially flat, double-ply braided ribbon which is then wrapped about the outer surface of the second intersection portion. The helical braid is again applied along the first cylindrical portion and a second braided ribbon is then wrapped about the outer surface of the third cylindrical portion. The fibers are impregnated with a thermosetting resin which is cured to produce the article.
Abstract:
A braided insitu consolidated structure of fiber reinforced thermoplastic resin strands is formed by braiding the strands on a mandrel and then advancing the mandrel and the braided structure as it is formed continuously through a heating zone to heat the resin to a flowable condition then cooling the structure as it leaves the zone. Pressure may be applied or developed against the braided structure during its formation.
Abstract:
a braided sleeve is formed from a tow of flexible filaments such as glass fibers and a rigid filament such as a stainless steel wire. The rigid filament reduces the tendency of a braided sleeve to fray at its ends, and can cause the end portions of the sleeve to taper inwardly, which can enhance the thermal insulation properties of the sleeve. The sleeve may be coated with polymeric material.