Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.
Abstract:
Micro-electromechanical systems (MEMS) pre-fabrication products and methods for forming MEMS devices using silicon-on-metal (SOM) wafers. An embodiment of a method may include the steps of bonding a patterned SOM wafer to a cover wafer, thinning the handle layer of the SOM wafer, selectively removing the exposed metal layer, and either continuing with final metallization or cover bonding to the back of the active layer.
Abstract:
The present invention relates to a process for forming microstructures on a substrate. A plating surface is applied to a substrate. A first layer of photoresist is applied on top of the plating base. The first layer of photoresist is exposed to radiation in a pattern to render the first layer of photoresist dissolvable in a first pattern. The dissolvable photoresist is removed and a first layer of primary metal is electroplated in the area where the first layer of photoresist was removed. The remainder of the photoresist is then removed and a second layer of photoresist is then applied over the plating base and first layer of primary metal. The second layer of photoresist is then exposed to a second pattern of radiation to render the photoresist dissolvable and the dissolvable photoresist is removed. The second pattern is an area that surrounds the primary structure, but it does not entail the entire substrate. Rather it is an island surrounding the primary metal. The exposed surface of the secondary metal is then machined down to a desired height of the primary metal. The secondary metal is then etched away.
Abstract:
Molded structures, methods of and apparatus for producing the molded structures are provided. At least a portion of the surface features for the molds are formed from multilayer electrochemically fabricated structures (e.g. fabricated by the EFAB™ formation process), and typically contain features having resolutions within the 1 to 100 μm range. The layered structure is combined with other mold components, as necessary, and a molding material is injected into the mold and hardened. The layered structure is removed (e.g. by etching) along with any other mold components to yield the molded article. In some embodiments portions of the layered structure remain in the molded article and in other embodiments an additional molding material is added after a partial or complete removal of the layered structure.
Abstract:
A method of fabricating a MEMS device includes conditioning of an insulating layer by applying a voltage across the insulating layer via a conductive sacrificial layer for a period of time, prior to removal of the conductive sacrificial layer. This conditioning process may be used to saturate or stabilize charge accumulated within the insulating layer. The resistance across the insulating layer may also be measured to detect possible defects in the insulating layer.
Abstract:
Methods for Implementation of a Switching Function in a Microscale Device and for Fabrication of a Microscale Switch. According to one embodiment, a method is provided for implementing a switching function in a microscale device. The method can include providing a stationary electrode and a stationary contact formed on a substrate. Further, a movable microcomponent suspended above the substrate can be provided. A voltage can be applied between the between a movable electrode of the microcomponent and the stationary electrode to electrostatically couple the movable electrode with the stationary electrode, whereby the movable component is deflected toward the substrate and a movable contact moves into contact with the stationary contact to permit an electrical signal to pass through the movable and stationary contacts. A current can be applied through the first electrothermal component to produce heating for generating force for moving the microcomponent.
Abstract:
A sacrificial layer and a method for applying said sacrificial layer in fabricating microelectromechanical devices are disclosed herein. The sacrificial layer comprises an early transition metal. Specifically, the sacrificial layer comprises an early transition metal element, an early transition metal alloy or an early transition metal silicide.
Abstract:
MEMS Device Having Contact and Standoff Bumps and Related Methods. According to one embodiment, a movable MEMS component suspended over a substrate is provided. The component can include a structural layer having a movable electrode separated from a substrate by a gap. The component can also include at least one standoff bump attached to the structural layer and extending into the gap for preventing contact of the movable electrode with conductive material when the component moves.
Abstract:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
Abstract:
A method for protecting a material of a microstructure comprising said material and a noble metal layer (8) against undesired galvanic etching during manufacture comprises forming on the structure a sacrificial metal layer (12) having a lower redox potential than said material, the sacrificial metal layer (12) being electrically connected to said noble metal layer (8).