Abstract:
A rope (20) comprising a core element (22) surrounded by a plurality of helically twisted and compacted steel strands (24) comprising steel wires (25, 26, 27) having a nominal tensile strength of at least 1960 N/mm2. The core element (22) comprises natural fibers having a linear density of at least 50 g/m.
Abstract translation:一种绳索(20),包括由包括具有至少为1960N / mm 2的标称拉伸强度的钢丝(25,26,27)的多个螺旋扭曲和压实的钢绞线(24)包围的芯元件(22)。 核心元件(22)包括线密度为至少50g / m 2的天然纤维。
Abstract:
The invention provides a composite rope (10, 20) and mesh net (50) made therefrom. The composite rope (10, 20) comprises a plurality of outer fibre strands (14, 24) twisted or braided around an inner elongate core (12, 22) so as to provide the rope (10, 20) with increased durability. The inner elongate core (12, 22) extends at least partially in a helical configuration, and may comprise an expanded metal wire core having a helical configuration, alternatively a number of steel or synthetic elongate strands or filaments (26) wound to form a twisted cable in which each strand or filament (26) has a helical configuration. The mesh net (50) comprises a number of lengths of rope (52) knotted together at regular spaced intervals, with the net (50) being stretched and heat set during manufacture, and wherein the mesh net (50) includes at least some lengths of composite rope (10, 20) in accordance with the invention. The invention further provides for methods of using the mesh net (50).
Abstract:
The invention relates to cord (20) comprising a number of filaments twisted together. The peripheral surface of the cord (20) is at least partially coated with an adhesion promoting coating (24). The adhesion promoting coating (24) comprises at least a first layer comprising a silicon based coating, a titanium based coating, a zirconium based coating or a combination thereof. The invention further relates to a composite material comprising such a cord (20) embedded in a polymer material. Furthermore the invention relates to a method to manufacture such a cord (20).
Abstract:
A composite cable or rope is described. The cable or rope has an inner metallic rope or core, consisting of a plurality of metal strands, and a plurality of covering layers formed around the inner metallic core. An innovative anchoring and safety system is also described. The system has one or more anchorages, fixed to the roof, in each of which the rope is stably locked by screwing, so as not to create instability problems for people attached to the rope.
Abstract:
In an elevator rope, a plurality of steel outer layer strands are twisted together on an outer circumference of an inner layer rope. The inner layer rope has: a fiber core; a plurality of steel inner layer strands that are twisted together directly onto an outer circumference of the fiber core; and a resin inner layer rope coating body that is coated onto the outer circumference. A diameter of the inner layer strands is smaller than a diameter of the outer layer strands. The inner layer strands are greater in number than the outer layer strands.
Abstract:
A method of constructing a wire rope from plural outer strands and a core, the core having one or more core strands, each of the one or more core strands having plural core wires, the method comprising: swaging the core to laterally compress the core to an extent sufficient to cause concave deformation of at least some of the plural core wires; and closing the plural outer strands over the core to produce the wire rope.
Abstract:
A steel cord (10) adapted for the reinforcement of rubber products, the steel cord (10) comprises a core (12) and three or more outer strands (14) twisted around the core (12) in a cord twisting direction. The outer strands (14) comprise outer filaments (16) twisted in a strand twisting direction which is the same as the cord twisting direction. The outer strands (14) have a wavy form which makes spaces between the core (12) and the outer strands. The steel cord (10) has improvements on elongation at break and impact resistance capacity.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.
Abstract:
An uncured, composite rope includes at least one inner tow of structural fibers of a first material and a plurality of outer tows of structural fibers disposed about the at least one inner tow, the structural fibers of at least one of the plurality of outer tows being made from a second material that is different from the first material. The uncured, composite rope further includes an uncured polymeric resin impregnated into the at least one inner tow and the plurality of outer tows.
Abstract:
The object of the invention is a traction sheave elevator and a rope (3) that contains metal as a load-bearing material, such as the suspension rope of an elevator, which rope comprises at least one or more strands (7) laid from metal wires (9) and which rope (3) is lubricated with a lubricant (8). Another object is the use of the aforementioned lubricant for lubricating the rope (3). The lubricant (8) comprises at least oil and thickener, which thickener in the lubricant (8) comprises at least 10% or more of the mass of the lubricant (8).