Abstract:
A polygon motor unit is mounted in a housing and includes a polygon mirror, a polygon motor, a board, a thermally conductive member and an elastic member. The polygon mirror is rotated and deflects light. The polygon motor includes a shaft portion and rotates the polygon mirror. The board includes a first surface and a second surface opposite to the first surface, and the polygon mirror and the polygon motor are mounted on the first surface. The thermally conductive member includes a positioning portion for setting a reference position, a third surface facing the second surface and a projection projecting from the third surface toward the second surface and configured to position the board with respect to the reference position by coming into contact with the second surface. The elastic member is made of a thermally conductive material and arranged between the second surface and the third surface.
Abstract:
According to an embodiment, a polyhedron may be provided. The polyhedron may include a first luminescent face; and a second luminescent face.
Abstract:
An apparatus and method are provided. In particular, at least one first electro-magnetic radiation may be provided to a sample and at least one second electro-magnetic radiation can be provided to a non-reflective reference. A frequency of the first and/or second radiations varies over time. An interference is detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. Alternatively, the first electro-magnetic radiation and/or second electro-magnetic radiation have a spectrum which changes over time. The spectrum may contain multiple frequencies at a particular time. In addition, it is possible to detect the interference signal between the third radiation and the fourth radiation in a first polarization state. Further, it may be preferable to detect a further interference signal between the third and fourth radiations in a second polarization state which is different from the first polarization state. The first and/or second electro-magnetic radiations may have a spectrum whose mean frequency changes substantially continuously over time at a tuning speed that is greater than 100 Tera Hertz per millisecond.
Abstract:
Disclosed is a method for manufacturing a surface-emitting laser device that emits laser light in a direction perpendicular to a substrate. The method includes manufacturing a laminated body in which a lower reflecting mirror, a resonator structure including an active layer, and an upper reflecting mirror including a selectively oxidized layer are laminated on the substrate; etching the laminated body from an upper surface to form a mesa structure having at least the selectively oxidized layer exposed at a side surface; and mounting the laminated body on a tray having a front surface shaped to follow a warpage of the laminated body at an oxidation temperature and selectively oxidizing the selectively oxidized layer from the side surface of the mesa structure, thereby generating a confinement structure in which a current passing region is surrounded by an oxide.
Abstract:
A light scanning apparatus to be used in an electrophotographic image forming apparatus, the light scanning apparatus including: a housing having an outer wall provided with an opening; a light source configured to emit a light beam; a deflecting device provided in the housing and configured to deflect the light beam emitted from the light source such that the light beam emitted from the light source scans a photosensitive member; an optical element arranged on an optical path of the light beam in the housing; and an elastic member provided on the housing to block up the opening, wherein the elastic member is formed of a material which is deformable to increase and decrease a volumetric capacity of an internal space formed by the housing and the elastic member in accordance with a temperature fluctuation inside the housing.
Abstract:
A scanning system includes a synchronizing arrangement including a light guide and a photosensor. The light guide directs a light beam to a photosensor, wherein light is deflected by one or more moving elements in the scanning system into a scanning region. The light guide has a light entry region, a reflecting region for reflecting light entering the light entry region and one or more light exit faces, so that light entering the light guide through the light entry region is at least partly reflected in the reflecting region and exits through one of the exit faces. The shape and the properties of the light guide are such that for two pencils of light rays, a first pencil of light rays is spaced from the second pencil and is non-overlapping with said second pencil of light rays.
Abstract:
A laser scanning optical device includes: alight source having a plurality of emission points; a plate-like light source holder which holds the light source in a center of the light source holder; a base arranged to face the light source holder; and an attitude adjusting part which adjusts an attitude of the light source by adjusting a tilt of the light source holder, and the attitude adjusting part includes an inclined part and an inclination conveying part, and adjusts the tilt of the light source holder with respect to the base by displacing an abutting position of the inclined part corresponding to the inclination conveying part along an inclined surface of the inclined part.
Abstract:
A laser transmitter projects a beam of laser light outward while raising and lowering the beam. The beam may define a conical surface of varying inclination. The transmitter includes a laser source that directs a beam generally vertically, and a beam diverting element. The beam diverting element is positioned in the path of the beam, intercepting the beam and redirecting it. The beam emerges from the transmitter as a non-vertical beam that is raised and lowered. The diverting element may include a pair of mirrors configured as a pentaprism, with one of the mirrors pivotable. Alternatively, the diverting element may include a plurality of micro mirrors. Also, the diverting element may include a conical reflector and an annular lens which is cyclically raised and lowered. The beam may be raised and lowered cyclically according to a predetermined schedule, or it may be raised and lowered non-cyclically.
Abstract:
An optical device is disclosed, including a surface emitting laser element having a surface emitting laser which emits a light in a direction which is perpendicular to a substrate face; a light receiving element which monitors the light of the surface emitting laser; a package provided with a region on which the surface emitting laser element and the light receiving element are provided; and a lid which has a window through which passes the light of the surface emitting laser, the window being formed with a transparent member, and which covers the surface emitting laser element and the light receiving element.
Abstract:
A laser scanning system for generating a laser scanning pattern in a scanning field, while amplifying the scan-angle multiplication factor of rotating mirrors employed therein. The laser scanning system employs rotatable laser scanning assembly having an axis of rotation and first and second rotating mirrors with normal vectors that are coplanar with each other and said rotational axis, and which form an acute angle substantially less than 90 degrees so as to provide a laser scanning assembly with a scan angle multiplication factor that is greater than 2.0. A cluster of stationary mirrors mounted about the first and second rotating mirrors, for sweeping a laser beam off the cluster of stationary mirrors after a laser beam has been reflected off the first rotating mirror, then reflected off the second rotating mirror, and then directed outwardly towards an array of pattern mirrors, so as to generate a resultant laser scanning pattern within the scanning field.