Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
Abstract:
A radiation source (SO) suitable for providing a beam of radiation to an illuminator of a lithographic apparatus. The radiation source comprises a nozzle (128) configured to direct a stream of fuel droplets along a trajectory (140) towards a plasma formation location (212). The radiation source is configured to receive a first amount of radiation (205) such that, in use, the first amount of radiation is incident on a fuel droplet at the plasma formation location. The first amount of radiation transfers energy to the fuel droplet to generate a radiation generating plasma that emits a second amount of radiation (132). The radiation source further comprises an alignment detector having a first sensor arrangement (122) and a second sensor arrangement (134). The first sensor arrangement is configured to measure a property of a third amount of radiation (205a) that is indicative of a focus position of the first amount of radiation. The second sensor arrangement is configured to measure a property of a fourth amount of radiation (138), the fourth amount of radiation being a portion of the first amount of radiation that is reflected by the fuel droplet upon which the first amount of radiation is incident.
Abstract:
Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ions species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (“CPC”) superconductor, or boson energy transmission system.
Abstract:
A charged particle beam system for imaging and processing targets is disclosed, comprising a charged particle column, a secondary particle detector, and a secondary particle detection grid assembly between the target and detector. In one embodiment, the grid assembly comprises a multiplicity of grids, each with a separate bias voltage, wherein the electric field between the target and the grids may be adjusted using the grid voltages to optimize the spatial distribution of secondary particles reaching the detector. Since detector lifetime is determined by the total dose accumulated at the area on the detector receiving the largest dose, detector lifetime can be increased by making the dose into the detector more spatially uniform. A single resistive grid assembly with a radial voltage gradient may replace the separate grids. A multiplicity of deflector electrodes may be located between the target and grid to enhance shaping of the electric field.
Abstract:
Techniques for commensurate cusp-field for effective ion beam neutralization are disclosed. In one particular exemplary embodiment, the techniques may be realized as a charged particle injection system comprising a beamguide configured to transport an ion beam through a dipole field. The charged particle injection system may also comprise a first array of magnets and a second array of magnets configured to generate a multi-cusp magnetic field, positioned along at least a portion of an ion beam path, the first array of magnets being on a first side of the ion beam path and the second array of magnets being on a second side of the ion beam path. The charged particle injection system may further comprise a charged particle source having one or more apertures configured to inject charged particles into the ion beam path. The charged particle injection system may furthermore align the one or more apertures with at least one of the first array of magnets and the second array of magnets to align the injected charged particles from the charged particle source with one or more magnetic regions for an effective charged particle diffusion into the ion beam path.
Abstract:
A scanning microscope is provided for producing a scan image at high spatial resolution and in a low acceleration voltage area. An acceleration tube is located in an electron beam path of an objective lens for applying a post-acceleration voltage of the primary electron beam. The application of an overlapping voltage onto a sample allows a retarding electric field against the primary electron beam to be formed between the acceleration tube and the sample. The secondary electrons generated from the sample and the secondary signals such as reflected electrons are extracted into the acceleration tube through the effect of an electric field (retarding electric field) immediately before the sample. The signals are detected by secondary signal detectors located upwardly than the acceleration tube.