Abstract:
To provide an engine control unit for facilitating steering control. In particular, the invention relates to a controller of a boat propelled by jetting water pressurized and accelerated by a water jet pump. If a throttle angle of an engine for driving the water jet pump is a predetermined value or less and a steering angle by a steering handlebar of the jet propulsion boat is a predetermined value or more, a throttle valve of the engine is operated in an opened direction and advance angle control is made over the normal ignition timing of the engine.
Abstract:
In a shift mechanism for an outboard motor mounted on a stern of a boat and having an internal combustion engine and a propeller connected by a propeller shaft to the engine to propel the boat, a vertical shaft connected to the engine and transmitting an output of the engine to the propeller shaft is divided into two shaft halves and an electromagnetic clutch is provided to connect/disconnect the shaft halves. An electronic controller is provided to operate the electromagnetic clutch to disconnect the vertical shaft halves until one of the forward and reverse gears corresponding to the instruction to shift has been engaged with the propeller shaft, and then operate it to connect the shaft halves after the one of the forward gear and the reverse gear has been engaged with the propeller shaft. Alternatively, two electromagnetic clutches are provided to engage the forward or reverse gear with the propeller shaft, and the controller controls operation of the electromagnetic clutches in response to the instruction to shift such that corresponding one of the forward and reverse gears is engaged with the propeller shaft. With this, it becomes possible to decrease an impact occurring at the beginning of shift, thereby enabling to prevent the outboard motor from vibrating, while enabling to improve the operation feeling and facilitate maintenance, and to avoid a problem regarding space utilization.
Abstract:
An outboard motor has a drive unit and a bracket assembly mounted on an associated watercraft to carry the drive unit. The drive unit has a steering shaft supported by the bracket assembly for pivotal movement about a steering axis that extends generally vertically. An engine of the outboard motor has throttle valves that regulate an amount of air to combustion chambers of the engine. A handle bar extends from the steering shaft. The handle bar includes a throttle valve control grip disposed at an end portion of the handle bar for pivotal movement about an axis of the handle bar. The control grip is connected to the throttle valves to operate the throttle valves. A lock mechanism can inhibit the control grip from rotating. The lock mechanism is positioned at a terminal end of the end portion.
Abstract:
A shift operation apparatus for an outboard motor of the present invention comprises a case fixed to an outboard motor, a motor provide at the case, a worm gear which is rotated by the motor, a worm wheel engages with the worm gear, an output shaft provided so as to freely rotate, a gear mechanism which transmits rotation of the worm wheel to the output shaft, an output arm which is attached to the output shaft, and which moves a range from a shift forward position to a shift reverse position with a neutral position being a boundary, a sensor which outputs a signal relating to a shift position of the output arm to a control circuit, and a force transmitting member whose one end is connected to the output arm, and whose other end is connected to a portion to be operated of a shift mechanism.
Abstract:
A forward/backward gear shifting mechanism for an outboard engine includes an operating cable C passed through an outer pipe 35 fixed to a bracket 28 attached to an under cover 8 and extended into an engine room, a shift rod 30 for shifting a forward/backward gear 15, a driving arm 72 for turning the shift rod 30, and a transmission mechanism 60 linked to the operating cable C to transmit operating force to the driving arm 72. The transmission mechanism 60 includes an arm mechanism including an input arm 61, an output arm 62 and a pivotal shaft 63 and supported for turning about a fixed rotational axis L4 by support members 69 and 70 on the engine unit 2. The operating cable C is linked to the input member 61 of the transmission mechanism 60 by a slider 40, i.e., a linking member. A connecting member 44 connecting the input member 61 and the slider 40 is nearer to the bracket 28 than a connecting member 43 connecting the operating cable C and the slider 40. A necessary stroke of the operating cable C is secured, choices of disposing the transmission mechanism 60 are increased, the lightness of a shifting operation is improved, and the transmission mechanism 60 is compact.
Abstract:
The invention concerns a drive system, especially for a vehicle, with a drive unit, especially an internal combustion engine, a transmission with variable transmission ratio between drive unit and drive, and especially with a continuously variable transmission ratio or one variable in fine gradations, at least one additional unit driven by the drive unit, especially an electric generator, a control, which selects the transmission ratio within a range of possible transmission ratios, so that the highest possible efficiency is achieved with joint consideration of the individual efficiency functions of the vehicle drive and the additional unit(s) and their drive, in which the individual efficiency functions are incorporated in the total efficiency with a weight corresponding to the power fraction of the vehicle drive and additional unit(s). The invention is also geared toward a corresponding method.
Abstract:
A vehicle traction control system is controlled in part by a signal value indicative of estimated wheel torque. The estimated wheel torque value is produced within the vehicle's electronic engine control (EEC) module by summing a first value which indicated the estimated torque attributable to engine combustion and a second value which is proportional to engine acceleration/deceleration which indicates the amount of torque attributable to the inertial movement of engine and drive train masses. The second value is modified by a third value based on the speed ratio across the transmission. Before summing the two signal components, the signal which indicates combustion torque is preferably delayed with respect to the signal indicating inertial torque by a delay interval whose duration varies with engine speed to take into account the delay between intake fuel rate changes and combustion forces as well as delays attributable to the timing of the calculations themselves.
Abstract:
An idle speed control system for a marine propulsion system controls the amount of fuel injected into the combustion chamber of an engine cylinder as a function of the error between a selected target speed and an actual speed. The speed can be engine speed measured in revolutions per minute or, alternatively, it can be boat speed measured in nautical miles per hour or kilometers per hour. By comparing target speed to actual speed, the control system selects an appropriate pulse with length for the injection of fuel into the combustion chamber and regulates the speed by increasing or decreasing the pulse width.
Abstract:
A self-organizing fuzzy logic controller develops an adaptive pressure adder that modifies the magnitude of pressure supplied to a friction element of an automatic transmission. The controller uses a turbine speed versus engine torque table in KAM to store the adaptive pressure adder for each shift. Tables in KAM represent fuzzy rules which are altered based on shift performance criteria to produce a self-organizing fuzzy logic controller. The criteria, which define shift performance, include the ratio change slip time and the initial ratio change time divided by the desired slip time (called target ratio). The desired slip time is determined from a calibratable matrix. After a shifting event, an adaptive pressure adjustment is determined for the next shifting event having the same conditions. A two-input (slip time and target ratio) fuzzy logic controller is used to determine the pressure adjustment. The adaptive pressure adjustment from the fuzzy controller is then increased if stage time is greater than a calibratable value. The adaptive pressure is also multiplied by a factor determined from the deviation in the throttle position reading for the shift event. Once the adaptive pressure is calculated, the adjustment is added to the cells of the adaptive pressure matrix that correspond to the turbine speed and engine torque conditions.
Abstract:
A shift and throttle control mechanism allows for control of the shift and throttle features of an outboard motor through two separate operators. For instance, one operator can be remotely positioned in the hull of an associated watercraft, while the other operator can be formed on a steering handle of the outboard motor. The shift and throttle control mechanism is also configured to fit within a cowling of the outboard motor, together with a four-cycle engine, without significantly increasing the size of the cowling. In one mode, the shift and throttle control mechanism includes a shift shaft arranged toward the front side of the engine. One of the operators is directly connected to shift shaft by a linkage rod. The other operator is connected by a shift control cable to a shift lever that is located on the side of the engine. This location of the shift lever allows the end of the shift control cable to be fixed within the cowling without increasing the cowling's size. A link connects the shift lever to the shift shaft, which in turn actuates a shift rod to control a transmission of the outboard motor.