Abstract:
An embodiment is a computer-implemented method for detecting a straight line in a digital image comprising a plurality of pixels comprising the steps: detecting an edge in the digital image, generating a first straight line which passes through a first pixel of the detected edge, generating a second straight line which passes through a second pixel of the detected edge, which is different from the first pixel, determining at least two intersections with a boundary of the digital image for each generated straight line, determining a set of two parameter values for each generated straight line based on the respective determined at least two intersections, wherein the set of two parameter values uniquely determines the respective generated straight line, and detecting the straight line in the digital image based on the determined sets of two parameter values.
Abstract:
The On-Chip Clock (OCC) circuit is for testing an integrated circuit having logic blocks connected in scan chains. An OCC controller is configured to receive a plurality of clock signals and output a plurality of shift/capture clock signals for use by the scan chains of logic blocks, the plurality of shift/capture clock signals including at least two consecutive at-speed capture clock pulses. An OCC monitor is configured to provide a verification of OCC operation based upon the at least two consecutive at-speed capture clock pulses. The OCC monitor may include a plurality of registers configured to provide delayed pulses based upon the at least two consecutive at-speed capture clock pulses, a counter configured to count differences between the delayed pulses, and an output register coupled to the counter and configured to provide a static data verification (e.g. output on an integrated circuit pad) for the test engineer.
Abstract:
The output of a Radio Frequency (RF) Power Amplifier (PA) is sampled and down-converted, and the amplitude envelope of the baseband feedback signal is extracted. This is compared to the envelope of a transmission signal, and the envelope tracking modulation of the RF PA supply voltage VCC is adaptively pre-distorted to achieve a constant ISO-Gain (and phase) in the RF PA. In particular, a nonlinear function is interpolated from a finite number gain values calculated from the feedback and transmission signals. This nonlinear function is then used to pre-distort the transmission signal envelope, resulting in a constant gain at the RF PA over a wide range of supply voltage VCC values. Since the gains are calculated from a feedback signal, the pre-distortion may be recalculated at event triggers, such as an RF frequency change. Furthermore, the method improves nonlinearity in the entire transmitter chain, not just the RF PA.
Abstract:
A receiver estimates a vector of emitted symbols over a MIMO transmission channel which are emitted by a emitting antennas. The receiver receives a vector of received symbols on receiving antennas. Estimation of the vector of emitted symbols is made by calculating a metric associated with a criterion for each vector of a subset of all possible vectors of emitted symbols and selecting an estimation for said vector of emitted symbol as the vector of emitted symbols among said subset which minimizes said metric.
Abstract:
A power harvesting circuit includes a new transmitter topology that ensures that no junction of thin oxide transistors forming the power harvesting circuit will experience a voltage across junctions of the transistors that is more than a maximum tolerable junction voltage. A supplemental power feed circuit operates to provide a supplemental feed current to components in a transmitter circuit when power harvested from a receiver circuit is insufficient to adequately power these components of the transmitter circuit, which may occur during high frequency operation of communications channels coupling the transmitter and receiver circuits. The supplemental power feed circuit also operates to sink a shunt current when power harvested from the receiver circuit is more than is needed to power the components in the transmitter circuit.
Abstract:
A computerized method for designing a layout of a driver includes analyzing a schematic circuit. PMOSFETs coupled between first common nodes are grouped into one or more first classes. NMOSFETs coupled between second common nodes are grouped into one or more second classes. The method further includes generating the layout for each MOSFET at each location in a layout area of the driver by generating a super parameterized cell (PCELL) layout block comprising a master MOSFET PCELL and a master guard ring PCELL for each of the first class and the second class. The master MOSFET PCELL includes a first set of parameters for the MOSFET and the master guard ring PCELL includes a second set of parameters for the guard ring around the MOSFET. A child PCELL of the master MOSFET PCELL and the master guard ring PCELL are instantiated at each location in the layout area.
Abstract:
A memory cell includes a latch having a true data node and a complement data node, a true bitline, a complement bitline, a first access transistor coupled between the true bitline and the true data node, and a second access transistor coupled between the complement bitline and the complement data node. A wordline driver circuit includes a true wordline coupled to control the first access transistor and a complement wordline coupled to control the second access transistor. The wordline driver generates control signals on the true and complement wordlines to access the memory cell by: actuating the first access transistor while the second access transistor is not actuated and then actuating the second access transistor while the first access transistor is not actuated. The bitlines and wordlines are supplied from different sets of power supply voltages, with the bitline high supply voltage being less than the wordline high supply voltage.
Abstract:
A buffer includes an input configured to receive a first digital signal having first and second logic states referenced, respectively, to a first high voltage and a first low voltage of a first supply domain. A first inverter circuit includes a pMOS transistor and nMOS transistor having gate terminals connected to the input. A second inverter is connected in series with the output of the first inverter. The second inverter has an output configured to generate a second digital signal having first and second logic states referenced, respectively, to a second high voltage and a second low voltage of a second, different, supply domain, wherein at least the second high voltage is greater than the first high voltage. A feedback circuit is configured to apply the second digital signal as a bias to a transistor body of the p-MOS transistor of the first inverter circuit.
Abstract:
A level shifter circuit is configured to receive first and second complementary input signals. Each of the first and second complementary input signals have a value of either a first supply voltage or a first reference voltage. The level shifter further includes a strong latch circuit operable in response to the first and second complementary input signals to drive one of first and second output signals to a second supply voltage and includes a weak latch circuit operable to drive the other of the first and second output signals to a second reference voltage.
Abstract:
An embodiment of a transmitter includes an amplifier having first and second differential output nodes, a first supply node, a first pull-up impedance having a first node coupled to the first differential output node and having a second node coupled to the supply node, and a second pull-up impedance having a first node coupled to the second differential output node and having a second node coupled to the supply node. An embodiment of a receiver includes an amplifier having first and second differential input nodes, a first supply node, a first pull-up impedance having a first node coupled to the first differential input node and having a second node coupled to the supply node, and a second pull-up impedance having a first node coupled to the second differential input node and having a second node coupled to the supply node. In an embodiment, the transmitter and receiver are capacitively coupled to one another.