Abstract:
A novel and useful linear, efficient, smart wideband CMOS hybrid power amplifier that combined an analog linear amplification path and a digital power amplification (DPA) path. PA path control logic analyzes the input I and Q signals and determines which amplification paths to steer the input I and Q signals to. The analog linear amplification path comprises digital to analog converters for both I and Q paths and one or more analog linear power amplifiers. The digital power amplification path comprises I and Q up-sampling circuits and I and Q RF DAC circuits (e.g., digital PA circuits). In operation, the PA path control logic compares the I and Q signals to thresholds (which may or may not be different) and based on the comparisons, selects one or more paths for the input I and Q signals. Whether the signals from the analog and digital amplification paths are to be combined or selected (i.e. switched), the PA path control circuit is operative to generate select (switch) control signals which are applied to summer/selector elements which generate the output of the hybrid PA.
Abstract:
A communication system that includes a transmit antenna, a radio frequency (RF) phase shifting module, an RF combiner, a first receive antenna and a second receive antenna; wherein the first and second receive antennas are located at a same distance from the transmit antenna; wherein the first and second receive antennas are arranged to receive first and second leakage signals resulting from a transmission of RF radiation by the transmit antenna; wherein the RF phase shifting module is configured to receive signals from the first and second receive antennas, to phase shift signals from at least one of first and second receive antennas to provide intermediate RF signals; wherein the phase shift caused by the RF phase shifting module introduces a destructive phase shift between the first and second leakage signals; wherein the RF combiner is configured to add the intermediate RF signals to provide combined RF signals.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A method that may include of at least partially surrounding with an insulating encapsulation lead frames, an integrated circuit attachment and wire bonding while preventing the insulating encapsulation from contacting at least one area of a base element; and at least partially surrounding an exterior of the insulating encapsulation with a conductive coating that contacts at least one area of the base element.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
There is provided a system that includes a tunable amplification module, a coupler, an interface module; a detector that is arranged to output an impedance indicative signal and a power indicative signal; wherein the impedance indicative signal is indicative of an impedance mismatch between an output impedance of the tunable amplification module and an impedance of a radio frequency (RF) antenna as seen by the tunable amplification module, wherein the power indicative signal is indicative of an output power of the tunable amplification module.
Abstract:
Methods and systems are provided for enhancing speech intelligibility in electronic devices. During outputting of acoustic signal via an electronic device, measurement of forces applied by user of the electronic device against the device (or enclosure thereof) may be obtained. The force measurements may be used to assess and/or estimate the listening intelligibility experienced by the user. Further, the force measurements may be used to control or adjust a listening intelligibility stage applied during generation and/or processing of the acoustic signals that are outputted via the electronic device. In some instances, an audio input, corresponding to ambient noise affecting intelligibility, may be obtained, and may be used to control or assist in controlling the listening intelligibility stage.
Abstract:
A method for power management of a self-luminous display having a pixel addressable intensity, the method is executed by a device that comprises the self-luminous display. The method may include determining a selected area and a non-selected area of the self-luminous display; and reducing power consumption associated with the non-selected area.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.