Abstract:
A nonvolatile memory device, a method of fabricating the nonvolatile memory device and a processing system including the nonvolatile memory device. The nonvolatile memory device may include a plurality of internal electrodes that extend in a direction substantially perpendicular to a face of a substrate, a plurality of first external electrodes that extend substantially in parallel with the face of the substrate, and a plurality of second external electrodes that also extend substantially in parallel with the face of the substrate. Each first external electrode is on a first side of a respective one of the internal electrodes, and each second external electrode is on a second side of a respective one of the internal electrodes. These devices also include a plurality of variable resistors that contact the internal electrodes, the first external electrodes and the second external electrodes.
Abstract:
A nonvolatile memory device includes a bottom electrode on a semiconductor substrate, a data storage layer on the bottom electrode, the data storage layer including a transition metal oxide, and a switching layer provided on a top surface and/or a bottom surface of the data storage layer, wherein a bond energy of material included in the switching layer and oxygen is more than a bond energy of a transition metal in the transition metal oxide and oxygen.
Abstract:
A magnetic tunnel junction device includes a magnetically programmable free magnetic layer. The free magnetic layer includes a lamination of at least two ferromagnetic layers and at least one intermediate layer interposed between the at least two ferromagnetic layers.
Abstract:
Magnetic Random Access Memory (MRAM) devices include a lower electrode and a magnetic tunnel junction on the lower electrode. The magnetic tunnel junction includes a seed layer and a tunneling barrier that is oriented in a same direction as the most closely packed plane direction of the seed layer. An oxide layer may be provided between the lower electrode and the magnetic tunnel junction. The lower electrode may be a titanium-rich TiN layer having more than 50 atomic percent titanium content. Analogous fabrication methods are also described.
Abstract:
A method of programming a non-volatile memory device including a transition metal oxide layer includes applying a first electric pulse to the transition metal oxide layer for a first period to establish a resistance of the transition metal oxide layer and applying a second electric pulse to the transition metal oxide layer for a second period, longer than the first period, to increase the resistance of the transition metal oxide layer. Related devices are also disclosed.
Abstract:
Magnetic Random Access Memory (MRAM) devices include a lower electrode and a magnetic tunnel junction on the lower electrode. The magnetic tunnel junction includes a seed layer and a tunneling barrier that is oriented in a same direction as the most closely packed plane direction of the seed layer. An oxide layer may be provided between the lower electrode and the magnetic tunnel junction. The lower electrode may be a titanium-rich TiN layer having more than 50 atomic percent titanium content. Analogous fabrication methods are also described.
Abstract:
A memory cell includes a plug-type first electrode in a substrate, a magneto-resistive memory element disposed on the first electrode, and a second electrode disposed on the magneto-resistive memory element opposite the first electrode. The second electrode has an area of overlap with the magneto-resistive memory element that is greater than an area of overlap of the first electrode and the magneto-resistive memory element. The first surface may, for example, be substantially circular and have a diameter less than a minimum planar dimension (e.g., width) of the second surface. The magneto-resistive memory element may include a colossal magneto-resistive material, such as an insulating material with a perovskite phase and/or a transition metal oxide.
Abstract:
In one embodiment, a memory device includes a first electrode layer on a substrate; a data storing layer on the first electrode layer; and a second electrode layer on the data storing layer. At least one of the first and second electrode layers may be formed of a material having a conduction band offset that varies with an applied voltage. One of the first and second electrode layers may be connected to a bit line and the other may be connected to a word line. The first electrode layer may include one of graphene and metastable oxide. The second electrode layer may include one of graphene and metastable oxide.
Abstract:
A non-volatile memory device may include a first wordline on a substrate, an insulating layer on the first wordline, and a second wordline on the insulating layer so that the insulating layer is between the first and second wordlines. A bit pillar may extend adjacent the first wordline, the insulating layer, and the second wordline in a direction perpendicular with respect to a surface of the substrate, and the bit pillar may be electrically conductive. In addition, a first memory cell may include a first resistance changeable element electrically coupled between the first wordline and the bit pillar, and a second memory cell may include a second resistance changeable element electrically coupled between the second wordline and the bit pillar. Related methods and systems are also discussed.
Abstract:
Semiconductor memory device having a stacking structure including resistor switch based logic circuits. The semiconductor memory device includes a first conductive line that includes a first line portion and a second line portion, wherein the first line portion and the second line portion are electrically separated from each other by an intermediate region disposed between the first and second line portions, a first variable resistance material film that is connected to the first line portion and stores data, and a second variable resistance material film that controls an electrical connection between the first line portion and the second line portion.