Abstract:
Exemplary embodiments of the present invention disclose a light emitting diode (LED) and a method of fabricating the same. The LED includes a substrate, a semiconductor stack arranged on the substrate, the semiconductor stack including an upper semiconductor layer having a first conductivity type, an active layer, and a lower semiconductor layer having a second conductivity type, isolation trenches separating the semiconductor stack into a plurality of regions, connectors disposed between the substrate and the semiconductor stack, the connectors electrically connecting the plurality of regions to one another, and a distributed Bragg reflector (DBR) having a multi-layered structure, the DBR disposed between the semiconductor stack and the connectors. The connectors are electrically connected to the semiconductor stack through the DBR, and portions of the DBR are disposed between the isolation trenches and the connectors.
Abstract:
An apparatus configured to write input data on an optical recording medium using a write pulse waveform including a first pulse, a last pulse and a multi-pulse train is provided. The apparatus includes a discriminator configured to discriminate a magnitude of a present mark, a magnitude of a leading space, and a magnitude of a trailing space from the input data, a write waveform controller configured to control the write pulse waveform based on a grouping table, the grouping table being configured to store rising edge data of the first pulse of the write pulse waveform grouped in corresponding pulse groups according to magnitudes of a plurality of present marks and magnitudes of a plurality of spaces adjacent to the plurality of present marks, the write pulse waveform being controlled to generate an adaptive write pulse waveform by varying a position of a rising edge of a first pulse of the mark to be written according to at least the magnitudes of the present mark and the leading space, and a processor configured to process the input data on the optical recording medium using the adaptive write pulse waveform. The discriminator is further configured to apply the magnitude of the present mark, the magnitude of the leading space, and the magnitude of the trailing space to the write waveform controller. The width of the first pulse is varied by varying the position of the rising edge.
Abstract:
Exemplary embodiments of the present invention provide light emitting diode (LED) chips and a method of fabricating the same. An LED chip according to an exemplary embodiment includes a substrate; a light emitting structure arranged on the substrate, and an alternating lamination bottom structure arranged under the substrate. The alternating lamination bottom structure includes a plurality of dielectric pairs, each of the dielectric pairs including a first material layer having a first refractive index and a second material layer having a second refractive index, the first refractive index being greater than the second refractive index.
Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
Abstract:
The present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer, an upper semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and are symmetric with respect to those of adjacent another of the light emitting cells.
Abstract:
A hot blast heater capable of heating air using solar energy and providing hot air for daily life is provided. The hot blast heater includes a chamber, a lifting part, a control part and a pump. The chamber is configured to form an accommodation space to accommodate air, has an inlet/an outlet which are formed through a lower part and an upper part of the chamber, respectively, such that indoor air is received through the inlet and air inside the chamber is discharged through the outlet, and is formed using light passing material or thermal conductive material. The lifting part is installed lengthwise along two facing sides of the window to lift the chamber such that the air inside the chamber is heated through sunlight or solar heat introduced through the window. The control part controls operations of the lifting part. The pump is installed at the outlet of the chamber to forcedly discharge the heated air inside the chamber to an indoor space. The air discharged through the outlet serves as hot blast used to warm indoor air.
Abstract:
An optical recording medium is provided, the optical recording medium including a plurality of zones respectively corresponding to width data of first and/or last pulses of an adaptive write pulse waveform stored in a grouping table, the grouping table being configured to group a magnitude of a present mark of input data and magnitudes of leading and/or trailing spaces of the present mark into a short pulse group, a middle pulse group, and a long pulse group using grouping pointers, store data configured to calculate a width of a write pulse, an adaptive write pulse being generated in response to the calculated width, generate the adaptive write pulse waveform by varying a position of a rising edge of a first pulse of a mark to be written according to the magnitudes of the present mark and the leading space, the adaptive write pulse waveform being generated without regard for the trailing space of the present mark being written using the adaptive write pulse waveform, the adaptive write pulse being configured to correspond to the adaptive write pulse waveform, and store rising edge data of the first pulse of the adaptive write pulse waveform varying according to corresponding stored values of lengths of marks to be written. A width of the first pulse is varied by varying the position of the rising edge.
Abstract:
AC LED according to the present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer consisting of a first conductive compound semiconductor layer formed on top of the substrate, an upper semiconductor layer consisting of a second conductive compound semiconductor layer formed on top of the lower semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and the respective light emitting cells are arranged so that the upper electrode pad and the lower electrode of one of the light emitting cells are symmetric with respect to those of adjacent another of the light emitting cells.