Abstract:
The present invention provides a method of producing nanostructure compositions and nanostructure films. The method includes adjusting white point of the nanostructure films in a continuous process. The present invention also provides an apparatus for preparing a nanostructure film for real-time white point adjustment.
Abstract:
The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one poly(alkylene oxide) ligand bound to the surface of the nanostructures, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.
Abstract:
Embodiments of measurement apparatus for measuring the optical properties of a sample film are described. The measurement apparatus includes a first stage, a second stage, and an arm structure coupled to the second stage. The first stage includes an optical source and a block of transparent material. The block of transparent material includes a surface that supports a sample film. The second stage includes a plurality of layers and an optical detector. The arm structure is designed to translate the second stage with respect to the first stage.
Abstract:
The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one reactive diluent, at least one anaerobic stabilizer, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.
Abstract:
Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
Abstract:
Embodiments of a population of buffered barrier layer coated nanostructures and a method of making the nanostructures are described. Each of the buffered barrier layer coated nanostructures includes a nanostructure, an optically transparent buffer layer disposed on the nanostructure, and an optically transparent buffered barrier layer disposed on the buffer layer. The buffered barrier layer is configured to provide a spacing between adjacent nanostructures in the population of buffered barrier layer coated nanostructures to reduce aggregation of the adjacent nanostructures. The method for making the nanostructures includes forming a solution of reverse micro-micelles using surfactants, incorporating nanostructures into the reverse micro-micelles, and incorporating a buffer agent into the reverse micro-micelles. The method further includes individually coating the nanostructures with a buffered barrier layer and isolating the buffered barrier layer coated nanostructures with the surfactants of the reverse micro-micelles disposed on the barrier layer.
Abstract:
Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
Abstract:
Highly luminescent nanostructures comprising a ZnSe core and ZnS shell layers, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. Processes for producing such highly luminescent nanostructures and techniques for shell synthesis are also provided.
Abstract:
Embodiments of a quantum dot carrier, a method of making a quantum dot carrier, and a quantum dot enhancement film are described. The quantum dot carrier includes a porous material, a plurality of quantum dots and a dispersing material for dispersing the quantum dots within the porous material. The porous material includes a plurality of pores while the quantum dots are disposed within the plurality of pores.
Abstract:
This invention provides novel nanofibers and nanofiber structures which posses adherent properties, as well as the use of such nanofibers and nanofiber comprising structures in the coupling and/or joining together of articles or materials.