摘要:
An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate and having a primary surface. The electronic device can further include first conductive structures within each of a first trench and a second trench, a gate electrode within the first trench and electrically insulated from the first conductive structure, a first insulating member disposed between the gate electrode and the first conductive structure within the first trench, and a second conductive structure within the second trench. The second conductive structure can be electrically connected to the first conductive structures and is electrically insulated from the gate electrode. The electronic device can further include a second insulating member disposed between the second conductive structure and the first conductive structure within the second trench. Processing sequences can be used that simplify formation of the features within the electronic device.
摘要:
In one embodiment, a source-down vertical insulated gate field effect transistor includes a source contact that is buried within a trench gate structure. Dopant of a first conductivity type is diffused from the conductive source contact into an adjacent semiconductor layer that has a second and opposite conductivity type to form source regions. A self-aligned metal contact is formed within the trench gate structure to short the source contact and the source regions to an underlying substrate.
摘要:
In one embodiment, an MOS transistor is formed with trench gates. The gate structure of the trench gates generally has a first insulator that has a first thickness in one region of the gate and a second thickness in a second region of the gate.
摘要:
An electronic device can include a gate electrode and a gate tap that makes an unlanded contact to the gate electrode. The electronic device can further include a source region and a drain region that may include a drift region. In an embodiment, the gate electrode has a height that is greater than its width. In another embodiment, the electronic device can include gate taps that spaced apart from each other, wherein at least some of the gate taps contact the gate electrode over the channel region. In a further embodiment, at a location where the gate tap contacts the gate electrode, the gate tap is wider than the gate electrode. A variety of processes can be used to form the electronic device.
摘要:
An electronic device including an integrated circuit can include a buried conductive region and a semiconductor layer overlying the buried conductive region, and a vertical conductive structure extending through the semiconductor layer and electrically connected to the buried conductive region. The integrated circuit can further include a doped structure having an opposite conductivity type as compared to the buried conductive region, lying closer to an opposing surface than to a primary surface of the semiconductor layer, and being electrically connected to the buried conductive region. The integrated circuit can also include a well region that includes a portion of the semiconductor layer, wherein the portion overlies the doped structure and has a lower dopant concentration as compared to the doped structure. In other embodiment, the doped structure can be spaced apart from the buried conductive region.
摘要:
A semiconductor substrate can be patterned to define a trench and a feature. In an embodiment, the trench can be formed such that after filling the trench with a material, a bottom portion of the filled trench may be exposed during a substrate thinning operation. In another embodiment, the trench can be filled with a thermal oxide. The feature can have a shape that reduces the likelihood that a distance between the feature and a wall of the trench will be changed during subsequent processing. A structure can be at least partly formed within the trench, wherein the structure can have a relatively large area by taking advantage of the depth of the trench. The structure can be useful for making electronic components, such as passive components and through-substrate vias. The process sequence to define the trenches and form the structures can be tailored for many different process flows.
摘要:
In one embodiment, semiconductor die having non-rectangular shapes and die having various different shapes are formed and singulated from a semiconductor wafer.
摘要:
A method for forming a transistor having insulated gate electrodes and insulated shield electrodes within trench regions includes forming dielectric stack overlying a substrate. The dielectric stack includes a first layer of one material overlying the substrate and a second layer of a different material overlying the first layer. Trench regions are formed adjacent to the dielectric stack. After the insulated shield electrodes are formed, the method includes removing the second layer and then forming the insulated gate electrodes. Portions of gate electrode material are removed to form first recessed regions, and dielectric plugs are formed in the first recessed regions using the first layer as a stop layer. The first layer is then removed, and spacers are formed adjacent the dielectric plugs. Second recessed regions are formed in the substrate self-aligned to the spacers.
摘要:
In one embodiment, a semiconductor device is formed having a trench structure. The trench structure includes a single crystalline semiconductor plug formed along exposed upper surfaces of the trench. In one embodiment, the single crystalline semiconductor plug seals the trench to form a sealed core.