Abstract:
A method for making a semiconductor device may include forming, on a substrate, at least one stack of alternating first and second semiconductor layers. The first semiconductor layer may comprise a first semiconductor material and the second semiconductor layer may comprise a second semiconductor material. The first semiconductor material may be selectively etchable with respect to the second semiconductor material. The method may further include removing portions of the at least one stack and substrate to define exposed sidewalls thereof, forming respective spacers on the exposed sidewalls, etching recesses through the at least one stack and substrate to define a plurality of spaced apart pillars, selectively etching the first semiconductor material from the plurality of pillars leaving second semiconductor material structures supported at opposing ends by respective spacers, and forming at least one gate adjacent the second semiconductor material structures.
Abstract:
One method disclosed herein includes forming a sacrificial gate structure comprised of upper and lower sacrificial gate electrodes, performing at least one etching process to define a patterned upper sacrificial gate electrode comprised of a plurality of trenches that expose a portion of a surface of the lower sacrificial gate electrode and performing another etching process through the patterned upper sacrificial gate electrode to remove the lower sacrificial gate electrode and a sacrificial gate insulation layer and thereby define a first portion of a replacement gate cavity that is at least partially positioned under the patterned upper sacrificial gate electrode.
Abstract:
Embodiments of the invention provide a semiconductor structure and a method of forming a semiconductor structure. Embodiments of the semiconductor structure have a plurality of fins on a substrate. The semiconductor has, and the method achieves, a silicide layer formed on and substantially surrounding at least one epitaxial region formed on a top portion of the plurality of fins. Embodiments of the present invention provide a method and structure for forming a conformal silicide layer on the epitaxial regions that are formed on the top portion of unmerged fins of a finFET.
Abstract:
Methods and structures associated with forming finFETs that have fin pitches less than 30 nm are described. A selective nitridation process may be used during spacer formation on the gate to enable finer fin pitch than could be achieved using traditional spacer deposition processes. The spacer formation may also allow precise control over formation of source and drain junctions.
Abstract:
Methods and structures for forming a reduced resistance region of a finFET are described. According to some aspects, a dummy gate and first gate spacer may be formed above a fin comprising a first semiconductor composition. At least a portion of source and drain regions of the fin may be removed, and a second semiconductor composition may be formed in the source and drain regions in contact with the first semiconductor composition. A second gate spacer may be formed covering the first gate spacer. The methods may be used to form finFETs having reduced resistance at source and drain junctions.
Abstract:
One method disclosed includes, among other things, forming an initial fin structure comprised of portions of a substrate, a first epi semiconductor material and a second epi semiconductor material, forming a layer of insulating material so as to over-fill the trenches that define the fin, recessing a layer of insulating material such that a portion, but not all, of the second epi semiconductor portion of the final fin structure is exposed, forming a gate structure around the final fin structure, further recessing the layer of insulating material such that the first epi semiconductor material is exposed, removing the first epi semiconductor material to thereby define an under-fin cavity and substantially filling the under-fin cavity with a stressed material.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate, and a gate overlying the semiconductor fins. The gate has a tapered outer surface. A first pair of sidewall spacers is formed adjacent the gate an exposed tapered outer surface is also defined. Portions of the gate are removed at the exposed tapered outer surface to define a recess. A second pair of sidewall spacers is formed covering the first pair of sidewall spacers and the recess. Source/drain regions are formed on the semiconductor fins.
Abstract:
An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
Abstract:
Techniques and structures for shaping the source and drain junction profiles of a finFET are described. A fin may be partially recessed at the source and drain regions of the finFET. The partially recessed fin may be further recessed laterally and vertically, such that the laterally recessed portion extends under at least a portion of the finFET's gate structure. Source and drain regions of the finFET may be formed by growing a buffer layer on the etched surfaces of the fin and/or growing a source and drain layer at the source and drain regions of the fin. The lateral recess can improve channel-length uniformity along the height of the fin.
Abstract:
One method disclosed herein includes forming a sacrificial gate structure comprised of upper and lower sacrificial gate electrodes, performing at least one etching process to define a patterned upper sacrificial gate electrode comprised of a plurality of trenches that expose a portion of a surface of the lower sacrificial gate electrode and performing another etching process through the patterned upper sacrificial gate electrode to remove the lower sacrificial gate electrode and a sacrificial gate insulation layer and thereby define a first portion of a replacement gate cavity that is at least partially positioned under the patterned upper sacrificial gate electrode.