摘要:
We have discovered methods of controlling a combination of PECVD deposition process parameters during deposition of thin films which provides improved control over surface standing wave effects which affect deposited film thickness uniformity and physical property uniformity. By minimizing surface standing wave effects, the uniformity of film properties across a substrate surface onto which the films have been deposited is improved. In addition, we have developed a gas diffusion plate design which assists in the control of plasma density to be symmetrical or asymmetrical over a substrate surface during film deposition, which also provides improved control over uniformity of deposited film thickness.
摘要:
For coupling RF power from an RF input of a plasma chamber to the interior of a plasma chamber, an RF bus conductor is connected between the RF input and a plasma chamber electrode. In one embodiment, an RF return bus conductor is connected to an electrically grounded wall of the chamber, and the RF bus conductor and the RF return bus conductor have respective surfaces that are parallel and face each other. In another embodiment, the RF bus conductor has a transverse cross section having a longest dimension oriented perpendicular to the surface of the plasma chamber electrode that is closest to the RF bus conductor.
摘要:
Embodiments disclosed herein generally include an alignment assembly for aligning a shadow frame on a susceptor. For producing large area flat panel displays or solar panels, the shadow frame that protects the areas of the susceptor not covered by the substrate from deposition may be so large that the shadow frame bends and doesn't properly align. By utilizing an alignment assembly having one or more ball bearings, the shadow frame may roll on the susceptor to a proper alignment position. Thus, the shadow frame may be prevented from bending and also align on the susceptor.
摘要:
Embodiments of the present invention generally relate to methods and apparatus for plasma generation in plasma processes. The methods and apparatus generally include a plurality of electrodes. The electrodes are connected to a RF power source, which powers the electrodes out of phase from one another. Adjacent electrodes are electrically isolated from one another by electrically insulating members disposed between and coupled to the electrodes. Processing gas may be delivered and/or withdrawn through the electrodes and/or the electrically insulating members. The substrate may remain electrically floating because the plasma may be capacitively coupled to it through a differential RF source drive.
摘要:
The present invention comprises a method of forming a zinc oxide based thin film transistor by blanket depositing the zinc oxide layer and the source-drain metal layer and then wet etching through the zinc oxide while etching through the source-drain electrode layer. Thereafter, the active channel is formed by dry etching the source-drain electrode layer without effectively etching the zinc oxide layer.
摘要:
The invention provides methods, systems, and drivers for controlling an inkjet printing system. The driver may include logic including a processor, memory coupled to the logic, and a fire pulse generator circuit coupled to the logic. The fire pulse generator may include a connector to facilitate coupling the driver to a print head. The fire pulse generator circuit may also include a fixed current source circuit adapted to generate a fire pulse with a constant slew rate that facilitates easy adjustment of ink drop size. The logic is adapted to receive an image and to convert the image to an image data file. The image data file is adapted to be used by the driver to trigger the print head to deposit ink into pixel wells on a substrate as the substrate is moved in a print direction. Numerous other aspects are disclosed.
摘要:
Methods and apparatus for inkjet inkjet drop positioning are provided. A first method includes determining an intended deposition location of an ink drop on a substrate, depositing the ink drop on the substrate using an inkjet printing system, detecting a deposited location of the deposited ink drop on the substrate, comparing the deposited location to the intended location, determining a difference between the deposited location and the intended location, and compensating for the difference between the deposited location and the intended location by adjusting a parameter of an inkjet printing system. Numerous other aspects are provided.
摘要:
In a first aspect, a system is provided. The system includes (1) a stage adapted to move a substrate relative to print heads during printing; (2) at least one print head suspended from a support above the stage and adapted to be moveable in a plane above the stage; (3) a controller operable to rotate the print head about a center of the print head; and (4) an imaging system adapted to capture an image of the print head and to determine a center point of the print head based upon images of the print head captured as the print head is rotated. Numerous other aspects are provided.
摘要:
A method of PECVD deposition of silicon-containing films has been discovered and further developed. The method is particularly useful when the films are deposited on substrates having surface areas which are larger than 25,000 cm2. The method prevents the deposition of partially reacted silicon-containing species which form a powdery material or haze (contaminant compound) on the substrate surface. The contaminant compounds are avoided by assuring that the power applied to form a plasma in the PECVD process is maintained, at least at a minimal level, until reactive silicon-containing precursor gases present above the surface of the substrate have been reacted or evacuated from the plasma processing area.
摘要:
The present invention generally comprises a method and apparatus for supplemental pumping, gas feed, and/or RF current for a process. When depositing amorphous silicon, the amount of process gases, RF current, and vacuum may be less than the amount of process gases, RF current, and vacuum necessary to deposit microcrystalline silicon. When a single chamber is used to deposit both amorphous and microcrystalline silicon, coupling a supplemental power supply, a supplemental gas source, and a supplemental vacuum pump to the chamber may be beneficial. The supplemental power supply, vacuum pump, and gas source, may be coupled with the chamber when the microcrystalline silicon is deposited and uncoupled when amorphous silicon is deposited. In a cluster tool arrangement, the supplemental power supply, vacuum pump, and gas source may serve multiple chambers that each deposit both amorphous and microcrystalline silicon.