Abstract:
A vertical cavity surface emitting laser includes a layer-stack structure including, on a substrate, a transverse-mode adjustment layer, a first multilayer reflecting mirror, an active layer having a light emission region, and a second multilayer reflecting mirror in order from the substrate side, and including a current confinement layer in which a current injection region is formed in a region corresponding to the light emission region in the first multilayer reflecting mirror, between the first multilayer reflecting mirror and the active layer, between the active layer and the second multilayer reflecting mirror, or in the second multilayer reflecting mirror. In the transverse-mode adjustment layer, reflectance at an oscillation wavelength in the region opposite to a center of the light emission region is higher than that at an oscillation wavelength in the region opposite to an outer edge of the light emission region.
Abstract:
The present invention provides a Vertical Cavity Surface Emitting Laser including: a first multilayer film reflector; an active layer having a light emission region; a second multilayer film reflector; and a reflectance adjustment layer in this order on a substrate side. The first multilayer film reflector and the second multilayer film reflector have a laminated structure in which reflectance of oscillation wavelength λx is almost constant without depending on temperature change. The active layer is made of a material with which a maximum gain is obtained at temperature higher than ambient temperature. The reflectance adjustment layer has a laminated structure in which difference ΔR(=Rx−Ry) between reflectance Rx of a region opposed to a central region of the light emission region and reflectance Ry of a region opposed to an outer edge region of the light emission region is increased associated with temperature increase from ambient temperature to high temperature.
Abstract:
A Vertical Cavity Surface Emitting Laser (VCSEL) capable of providing high output of fundamental transverse mode while preventing oscillation of high-order transverse mode is provided. The VCSEL includes a semiconductor layer including an active layer and a current confinement layer, and a transverse mode adjustment section formed on the semiconductor layer. The current confinement layer has a current injection region and a current confinement region. The transverse mode adjustment section has a high reflectance area and a low reflectance area. The high reflectance area is formed in a region including a first opposed region opposing to a center point of the current injection region. A center point of the high reflectance area is arranged in a region different from the first opposed region. The low reflectance area is formed in a region where the high reflectance area is not formed, in an opposed region opposing to the current injection region.
Abstract:
There is provided a semiconductor light-emitting device including a temperature detecting section which is allowed to accurately estimate an element temperature. The semiconductor light-emitting device includes: one or a plurality of surface-emitting semiconductor light-emitting sections and one or a plurality of semiconductor temperature detecting sections on a semiconductor substrate, the surface-emitting semiconductor light-emitting sections emitting light in a direction normal to the semiconductor substrate, the semiconductor temperature detecting sections not emitting light to outside. The semiconductor light-emitting sections and the semiconductor temperature detecting sections have a PN junction or a PIN junction in a direction normal to the semiconductor substrate.
Abstract:
A start control apparatus for an internal combustion engine, which takes an amount of a fuel vaporized from a heated fuel into consideration to prevent deterioration of startability due to an overrich or overlean condition caused by an excessive or insufficient amount of the vaporized fuel and to realize improvement of cold startability. The start control apparatus includes: a heater (14) for heating a fuel to be supplied to the internal combustion engine; fuel heating control unit (22) for energizing the heater when a cooling water temperature is less than an internal combustion engine start possible water temperature value to heat the fuel; and start time fuel setting unit (26) for setting a start time fuel injection amount of the internal combustion engine according to a fuel temperature after the fuel is heated by the fuel heating control unit (22), an alcohol concentration, and the cooling water temperature.
Abstract:
A surface-emitting laser diode capable of being manufactured easily at low cost, and capable of stabilizing the polarization direction of laser light in one direction and achieving higher output is provided. A light emission section 20 in which a lower first DBR mirror layer 12, a lower second DBR mirror layer 13, a lower spacer layer 14, an active layer 15 including a light emission region 15A, an upper spacer layer 16, a current confinement layer 17, an upper DBR mirror layer 18 and a contact layer 19 are laminated in this order is included on a substrate 10. The lower first DBR mirror layer 12 includes an oxidation section 30 nonuniformly distributed in a direction rotating around the light emission region 15A in a periphery of a region corresponding to the light emission region 15A. The oxidation section 30 includes a pair of multilayer films 31 and 32, and is formed by oxidizing a low refractive index layer 12A. Thereby, an anisotropic stress according to nonuniform distributions of the multilayer films 31 and 32 is generated in the active layer 15.
Abstract:
A charging device has a stainless steel sheet electrode for charging an image bearing member, and a cleaner for cleaning the stainless steel sheet electrode. The stainless steel sheet electrode has a thickness within a range from 50 μm to 60 μm and comprises aligned triangular pins. Each of the triangular pins has a vertex angle within a range from 10 degrees to 30 degrees. The cleaner has two grinding members comprising abrasive grains having an average diameter within a range from 2 μm to 9 μm, and the two grinding members are in contact with, respectively, both main surfaces of the sheet electrode. The cleaner and the sheet electrode are moved relative to each other at a constant speed by a force equal to or less than 2N.
Abstract:
A semiconductor light-emitting device includes a semiconductor light-emitting element including a first multilayer reflector, an active layer having a light-emitting region, and a second multilayer reflector in the stated order; a semiconductor light-detecting element disposed opposite the first multilayer reflector in relation to the semiconductor light-emitting element and including a light-absorbing layer configured to absorb light emitted from the light-emitting region; a transparent substrate disposed between the semiconductor light-emitting element and the semiconductor light-detecting element; a first metal layer having a first opening in a region including a region opposite the light-emitting region and bonding the semiconductor light-emitting element and the substrate; and a second metal layer having a second opening in a region including a region opposite the light-emitting region and bonding the semiconductor light-detecting element and the substrate.
Abstract:
A laser diode includes: a first multilayer film reflecting mirror, an active layer, and a second multilayer film reflecting mirror in this order; and a first oxide narrowing layer and a second oxide narrowing layer. The first oxide narrowing layer is formed close to the active layer, in comparison with the second oxide narrowing layer, includes a first unoxidized region in a middle region in a plane, and includes a first oxidized region on a periphery of the first unoxidized region. The second oxide narrowing layer includes, in a region facing the first unoxidized region, a second unoxidized region having a diameter smaller than that of the first unoxidized region, includes a third unoxidized region in a region not facing the first unoxidized region, and includes a second oxidized region on a periphery of the second unoxidized region and the third unoxidized region.
Abstract:
A laser diode allowed to stabilize the polarization direction of laser light in one direction is provided. The laser diode includes a laminate configuration including a lower multilayer reflecting mirror, an active layer and an upper multilayer reflecting mirror in order from a substrate side, in which the laminate configuration includes a columnar mesa section including an upper part of the lower multilayer reflecting mirror, the active layer and the upper multilayer reflecting mirror, and the lower multilayer reflecting mirror includes a plurality of pairs of a low refractive index layer and a high refractive index layer, and a plurality of oxidation layers nonuniformly distributed in a direction rotating around a central axis of the mesa section in a region except for a central region of one or more of the low refractive index layers.