Abstract:
Configurations are disclosed for presenting virtual reality and augmented reality experiences to users. The system may comprise an image-generating source to provide one or more frames of image data in a time-sequential manner, a light modulator configured to transmit light associated with the one or more frames of image data, a substrate to direct image information to a user's eye, wherein the substrate houses a plurality of reflectors, a first reflector of the plurality of reflectors to reflect transmitted light associated with a first frame of image data at a first angle to the user's eye, and a second reflector to reflect transmitted light associated with a second frame of the image data at a second angle to the user's eye.
Abstract:
A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
Abstract:
A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
Abstract:
A wearable display system includes a fiber scanner including an optical fiber and a scanning mechanism configured to scan a tip of the optical fiber along an emission trajectory defining an optical axis. The wearable display system also includes an eyepiece positioned in front of the tip of the optical fiber and including a planar waveguide, an incoupling diffractive optical element (DOE) coupled to the planar waveguide, and an outcoupling DOE coupled to the planar waveguide. The wearable display system further includes a collimating optical element configured to receive light reflected by the incoupling DOE and collimate and reflect light toward the eyepiece.
Abstract:
A display assembly suitable for use with a virtual or augmented reality headset is described and includes the following: an input coupling grating; a scanning mirror configured to rotate about two or more different axes of rotation; an optical element; and optical fibers, each of which have a light emitting end disposed between the input coupling grating and the scanning mirror and oriented such that light emitted from the light emitting end is refracted through at least a portion of the optical element, reflected off the scanning mirror, refracted back through the optical element and into the input coupling grating. The scanning mirror can be built upon a MEMS type architecture.
Abstract:
An augmented reality (AR) device is described with a display system configured to adjust an apparent distance between a user of the AR device and virtual content presented by the AR device. The AR device includes a first tunable lens that change shape in order to affect the position of the virtual content. Distortion of real-world content on account of the changes made to the first tunable lens is prevented by a second tunable lens that changes shape to stay substantially complementary to the optical configuration of the first tunable lens. In this way, the virtual content can be positioned at almost any distance relative to the user without degrading the view of the outside world or adding extensive bulk to the AR device. The augmented reality device can also include tunable lenses for expanding a field of view of the augmented reality device.
Abstract:
In a display system configured to display images at multiple depth planes, images perceived to be substantially full color or multi-colored may be formed using component color images that are distributed in unequal numbers across a plurality of depth planes. The distribution of component color images across the depth planes may vary based on color. In some embodiments, a display system includes a stack of waveguides that each output light of a particular color, with some colors having fewer numbers of associated waveguides than other colors. The stack of waveguides may include multiple pluralities of different numbers of waveguides, each plurality configured to produce an image by outputting light corresponding to a particular color. A display controller can introduce blur and/or change pixel size for images to be presented for at least one depth plane, based on the contents of images.
Abstract:
A method for displaying virtual content to a user, the method includes determining an accommodation of the user's eyes. The method also includes delivering, through a first waveguide of a stack of waveguides, light rays having a first wavefront curvature based at least in part on the determined accommodation, wherein the first wavefront curvature corresponds to a focal distance of the determined accommodation. The method further includes delivering, through a second waveguide of the stack of waveguides, light rays having a second wavefront curvature, the second wavefront curvature associated with a predetermined margin of the focal distance of the determined accommodation.
Abstract:
An augmented reality display system includes a pair of variable focus lens elements that sandwich a waveguide stack. One of the lens elements is positioned between the waveguide stack and a user's eye to correct for refractive errors in the focusing of light projected from the waveguide stack to that eye. The lens elements may also be configured to provide appropriate optical power to place displayed virtual content on a desired depth plane. The other lens element is between the ambient environment and the waveguide stack, and is configured to provide optical power to compensate for aberrations in the transmission of ambient light through the waveguide stack and the lens element closest to the eye. In addition, an eye-tracking system monitors the vergence of the user's eyes and automatically and continuously adjusts the optical powers of the pair of lens elements based on the determined vergence of those eyes.
Abstract:
Augmented reality and virtual reality display systems and devices are configured for efficient use of projected light. In some aspects, a display system includes a light projection system and a head-mounted display configured to project light into an eye of the user to display virtual image content. The head-mounted display includes at least one waveguide comprising a plurality of in-coupling regions each configured to receive, from the light projection system, light corresponding to a portion of the user's field of view and to in-couple the light into the waveguide; and a plurality of out-coupling regions configured to out-couple the light out of the waveguide to display the virtual content, wherein each of the out-coupling regions are configured to receive light from different ones of the in-coupling regions. In some implementations, each in-coupling region has a one-to-one correspondence with a unique corresponding out-coupling region.