摘要:
The bit line overdrive circuit of the present invention comprises a VBLH potential generation circuit generating a bit line final potential relative to a VBLH power supply line for driving a sense amplifier, a charge adjusting capacitance C, a transistor for supplying an overdrive potential to the VBLH power supply line, and a transistor for connecting a PCS node to the VBLH power supply line. The charge pre-charged from the overdrive potential to the VBLH power supply line is shared among the capacitance of the above-noted circuit elements connected to the VBLH power supply line, the bit line capacitance, and the capacitance of a cell capacitor so as to form a VBLH power supply of a substantially one system, thereby avoiding the generation of a power supply noise caused by the power supply switching.
摘要:
A semiconductor device includes a semiconductor chip and a circuit formed in the semiconductor chip. Pads are arranged in a plurality of rows on the semiconductor chip and electrically connected to the circuit. The pads on adjacent rows are offset from each other. Leads are provided on the semiconductor chip and bonding wires selectively connect the leads to the pads.
摘要:
A semiconductor memory device comprises a first core section including a plurality of memory cell arrays, a second core section including a plurality of memory cell arrays and provided below the first core section, a third core section including a plurality of memory cell arrays and provided in a right side of the first core section, and a fourth core section including a plurality of memory cell arrays and provided in a right side of the second core section, wherein at least a part of the memory cell arrays of the first core section and at least a part of the memory cell arrays of the fourth core section are simultaneously activated, and at least a part of the memory cell arrays of the second core section and at least a part of the memory cell arrays of the third core section are simultaneously activated.
摘要:
When an intermediate potential is required inside a semiconductor device, the constant potential generating circuit can output a stable potential, while maintaining a high driving capability, so that the controllability of the semiconductor device can be improved. The constant potential generating circuit comprises a first output circuit composed of two transistors P16 and N16 for supplying an intermediate output potential V.sub.out to a load; a second output circuit composed of two transistors P11 and N11 for outputting a voltage corresponding to the output potential V.sub.out to a node 13; a resistor R11 interposed between an output point of the output potential V.sub.out and the node 13; and a differential amplifier circuit Ad for comparing the voltage at the node 13 with the reference potential V.sub.ref to apply control signals to the transistors P11, N11, P16 and N16, respectively. In response to the control signals applied from the differential amplifier circuit Ad, the response speed of the second circuit composed of the transistors P11 and N11 is determined higher than that of the first circuit composed of the transistors P16 and N16. Therefore, when the output potential V.sub.out changes relative to the reference potential V.sub.ref, the gate control signals are outputted from the differential amplifier circuit Ad, by comparing the voltage at the node 13 (at which the response speed is high in response to the control signals) with the reference potential V.sub.ref, so that the output potential V.sub.out can be controlled at a stable point at high speed. �FIG. 1!
摘要:
A semiconductor memory device including a memory cell array, bit lines, and sense amplifier groups. The memory cell array is composed of a plurality of memory cells arranged roughly in a matrix pattern. A plurality of the memory cells arranged in a row are activated in response to a row address decode signal. A pair of the bit lines are provided for each column. The data of the corresponding activated memory cells are transmitted to the bit line pair. Each of the sense amplifier groups has n-units of sense amplifiers each connected to the bit line pair, to sense and amplify data read to the bit line pair connected thereto. The respective reference potential terminals of the sense amplifiers of each of the sense amplifier groups are connected to a single common node which can be connected to a reference potential via a sense amplifier activating transistor turned on in response to a row address signal. The sense amplifiers can be operated at high speed, while preventing erroneous operation, because the wiring resistances and the parasitic capacitances of the common source node of the sense amplifiers can be reduced.
摘要:
Disclosed herein is a semiconductor device comprising a semiconductor substrate, a well region provided in the surface of the substrate, a plurality of MOSFETs provided in the well region. The well region has parts having a low surface impurity concentration. Some of the MOSFETs have their channel regions provided in those parts of the well region which have the low surface impurity concentration. The other MOSFETs have their channel regions provided in other parts of the well region.
摘要:
The semiconductor device comprises: an internal supply voltage deboosting circuit for inputting an external supply voltage, deboosting the inputted external supply voltage, and outputting a deboosted voltage as an internal supply voltage; a first control circuit for deactivating the internal supply voltage deboosting circuit when the external supply voltage is lower than a predetermined value; and a second control circuit for outputting the external supply voltage as the internal supply voltage when the external supply voltage is lower than the predetermined value. When the external supply voltage is lower than a predetermined value, since the internal supply voltage deboosting circuit is deactivated by the first control circuit, the current consumption can be reduced. Further, since the external supply voltage is outputted as the internal supply voltage by the second control circuit, the deboosting operation is not required. The device is usable for different external supply voltages in spite of the same circuit configuration, while preventing the operational margin from being deteriorated.
摘要:
The control voltage .phi.1 outputted by the control voltage generating circuit 1 is at a low level in a range where an external supply voltage Vcc is lower than the threshold value of the transistor P1, but increases continuously in analog manner when the external supply voltage Vcc rises. After having matched the external supply voltage Vcc, the control voltage .phi.1 increases in the same way as the external supply voltage Vcc. By use of the control voltage provided with the characteristics as described above for an output circuit, controlled is the gate of a transistor P4 of a low-voltage operating output section 6 operative only at a voltage lower than a predetermined value. The transistor P2 of a full-voltage operating output section 5 of the output circuit is always operative on the basis of the control signal .phi.H of the data output control circuit 3. When the external supply voltage is low below the predetermined value, the transistor P4 is perfectly turned on, so that the conductance thereof increases. In the semiconductor integrated circuit device operative on the basis of a plurality of supply voltages, it is possible to prevent the operation margin from being reduced near the switching point of the gate voltages of the driving transistors and the data output transistors.
摘要:
A semiconductor integrated circuit is operative in a plurality of different modes. A plurality of select signals whose number corresponds to modes selected from a plurality of different modes are outputted. In response to the select signals, it is detected whether at least two operation modes are selected simultaneously. If so, a detection signal is outputted. In response to this detection signal, the operation of the semiconductor integrated circuit is stopped. Further, in response to the select signal, the semiconductor integrated circuit is activated in a mode by means of a predetermined select signal of these select signals. Further, in response to these select signals, the selected mode can be detected.
摘要:
A DRAM according to the invention has noise-eliminating circuits. Each of the circuits has an output side thereof connected to a corresponding word line. At the time of a voltage stress examination, each of the circuits is controlled to be in an on-state thereby transmitting a voltage stress, input an input side thereof, to the word line. At the time of normal operation, the input side of the circuit is connected to an earth node, and each of the circuits is turned on and off in accordance with a signal output from a corresponding one of word line-selecting circuits or with the level of a corresponding one of the word lines.