Abstract:
The present invention provides a method and apparatus for measuring the reflectivity of a substrate surface in situ. A transmitting assembly includes a light source positioned externally to a vacuum chamber and proximate an opening to transmit an optical beam into the vacuum chamber. An optical beam supplied by the light source is transmitted into the chamber via one or more optical devices such as fiber optics cables, lens and the like. Reflected portions of the optical beam are collected by a receiving assembly. A signal processing system coupled to the receiving assembly is programmed to determine the reflectivity of a substrate disposed in the vacuum chamber.
Abstract:
The invention relates to an apparatus and process for the vaporization of liquid precursors and deposition of a film on a suitable substrate. Particularly contemplated is an apparatus and process for the deposition of a metal-oxide film, such as a barium, strontium, titanium oxide (BST) film, on a silicon wafer to make integrated circuit capacitors useful in high capacity dynamic memory modules.
Abstract:
An apparatus and associated methods for polishing semiconductor wafers and other workpieces that includes a polishing surfaces, such as pads mounted on respective platens, located at multiple polishing stations. Multiple wafer heads, preferably at least one greater in number than the number of polishing stations, can be loaded with individual wafers. The wafer heads are suspended from a rotatable support, which provides circumferential positioning of the heads relative to the polishing surfaces, and the wafer heads move linearly with respect to the polishing surface, for example oscillate radially within the rotatable support. A load/unload station may be located at a position symmetric with the polishing surfaces. The rotatable support can simultaneously position one of the heads over the load/unload station while the remaining heads are located over polishing stations for wafer polishing so that loading and unloading of wafers can be performed concurrently with wafer polishing. The multiple polishing stations can be used to sequentially polish a wafer held in a wafer head in a step of multiple steps. The steps may be equivalent, may provide polishes of different finish, or may be directed to polishing different levels. Alternately, more than one wafer may equivalently be polished at multiple polishing stations.
Abstract:
An electrostatic chuck (20) for holding a substrate (45) is described. One version of the chuck (20) suitable for mounting on a base (25), comprises (i) an electrostatic member (33) having an electrode (50) therein, and (ii) an electrical lead (60) extending through the base (25) to electrically engage the electrode (50) of the electrostatic member (33). When the chuck (20) is used to hold a substrate (45) in a process chamber (80) containing erosive process gas, the substrate (45) covers and substantially protects the electrical lead (60) from erosion by the erosive process gas. In a preferred version of the chuck (20), an electrical connector (55) forming an integral extension of the electrode (50), electrically connects the electrode (50) to a voltage supply terminal (70) used to operate the chuck (20). The electrical connector (55) comprises (i) an electrical lead (60) that extends through the base (25), and (ii) an electrical contact (65) on the electrical lead (60), the contact sized sufficiently large to directly contact and electrically engage the voltage supply terminal (70). The electrode (50) of the chuck (20) can comprise first and second electrodes (130), (135) electrically isolated from one another by an electrical isolation void (52), the electrodes sized and configured so that the electrical isolation void (52) can serve as a cooling groove (105) for holding coolant for cooling the substrate (45) held on the chuck (20). Preferably, the two electrode chuck (20) is used in conjunction with a switching system capable of operating the chuck (20) in either a monopolar mode or in a bipolar mode.
Abstract:
A carrier head for a chemical mechanical polishing system includes a substrate sensing mechanism. The carrier head includes a base and a flexible member connected to the base to define a chamber. A lower surface of the flexible member provides a substrate receiving surface. The substrate sensing mechanism includes a sensor to measure a pressure in the chamber and generate an output signal representative thereof, and a processor configured to indicate whether the substrate is attached to the substrate receiving surface in response to the output signal.
Abstract:
An integrated modular multiple chamber vacuum processing system is disclosed. The system includes a load lock, may include an external cassette elevator, and an internal load lock wafer elevator, and also includes stations about the periphery of the load lock for connecting one, two or several vacuum process chambers to the load lock chamber. A robot is mounted within the load lock and utilizes a concentric shaft drive system connected to an end effector via a dual four-bar link mechanism for imparting selected R--.THETA. movement to the blade to load and unload wafers at the external elevator, internal elevator and individual process chambers. The system is uniquely adapted for enabling various types of IC processing including etch, deposition, sputtering and rapid thermal annealing chambers, thereby providing the opportunity for multiple step, sequential processing using different processes.
Abstract:
An electrostatic chuck (20) for holding a substrate (45) is described. One version of the chuck (20) suitable for mounting on a base (25), comprises (i) an electrostatic member (33) having an electrode (50) therein, and (ii) an electrical lead (60) extending through the base (25) to electrically engage the electrode (50) of the electrostatic member (33). When the chuck (20) is used to hold a substrate (45) in a process chamber (80) containing erosive process gas, the substrate (45) covers and substantially protects the electrical lead (60) from erosion by the erosive process gas. In a preferred version of the chuck (20), an electrical connector (55) forming an integral extension of the electrode (50), electrically connects the electrode (50) to a voltage supply terminal (70) used to operate the chuck (20). The electrical connector (55) comprises (i) an electrical lead (60) that extends through the base (25), and (ii) an electrical contact (65) on the electrical lead (60), the contact sized sufficiently large to directly contact and electrically engage the voltage supply terminal (70). The electrode (50) of the chuck (20) can comprise first and second electrodes (130), (135) electrically isolated from one another by an electrical isolation void (52), the electrodes sized and configured so that the electrical isolation void (52) can serve as a cooling groove (105) for holding coolant for cooling the substrate (45) held on the chuck (20). Preferably, the two electrode chuck (20) is used in conjunction with a switching system capable of operating the chuck (20) in either a monopolar mode or in a bipolar mode. Erosion resistance of the chuck (20) is further enhanced by a masking gas assembly (115) which directs a masking gas at an exposed portion of the insulator (35), to protect the exposed portion of the insulator (35) from the erosive gas contained in the process chamber (80).
Abstract:
A apparatus for removing deposits from within a space at least partially delimited by a surface which is subject to attack from a plasma including a surface cover comprising a material which is inert to the plasma.
Abstract:
An apparatus for polishing semiconductor wafers and other workpieces that includes polishing pads mounted on respective platens at multiple polishing stations. Multiple wafer heads, at least one greater in number than the number of polishing stations, can be loaded with individual wafers. The wafer heads are suspended from a carousel, which provides circumferential positioning of the heads relative to the polishing pads, and the wafer heads oscillate radially as supported by the carousel to sweep linearly across the respective pads in radial directions with respect to the rotatable carousel. Each polishing station includes a pad conditioner to recondition the polishing pad so that it retains a high polishing rate. Washing stations may be disposed between polishing stations and between the polishing stations and a transfer and washing station to wash the wafer as the carousel moves. A transfer and washing station is disposed similarly to the polishing pads. The carousel simultaneously positions one of the heads over the transfer and washing station while the remaining heads are located over polishing stations for wafer polishing so that loading and unloading of wafers and washing of wafers and wafer heads can be performed concurrently with wafer polishing. A robot positioned to the side of the polishing apparatus automatically moves cassettes filled with wafers into a holding tub, and transfers individual wafers vertically held in the cassettes between the holding tub and the transfer and washing station. The multiple polishing pads can be used to sequentially polish a wafer held in a wafer head in a step of multiple steps. The steps may be equivalent, may provide polishes of different finish, or may be directed to polishing different levels.
Abstract:
A semiconductor wafer processing system for processing wafers from a wafer storage cassette includes a wafer transfer chamber; a wafer storage elevator within the transfer chamber; one or more wafer processing chambers; and a wafer transfer apparatus for transferring a wafer between a standard storage cassette adjacent and outside the transfer chamber and the elevator, and between the elevator and the processing chamber. The storage chamber pressure varies between atmospheric when accepting wafers from outside, and a subatmospheric pressure when transferring wafers to or from a processing chamber. The transfer apparatus includes a robot arm; a thin flat wafer carrying blade at the leading end of the robot arm configured for engaging a wafer from the storage cassette or the elevator; and a wafer support tray configured for removable engagement with the blade and for engaging and positively positioning a wafer from the elevator, or a support pedestal within a processing chamber. When the transfer apparatus moves a wafer between the elevator and a processing chamber in an evacuated environment, the tray is engaged with the blade and helps retain the wafer during transit. When wafers are transferred between the cassette and the elevator at atmospheric pressure the tray is disengaged from the blade and placed in a rest position on the elevator, and the wafer transfer is performed by means of the blade alone with a vacuum pick integral to the blade. The blade includes upper and lower halves together defining vacuum channels and capacitive position sensors.