摘要:
In a projection objective provided for imaging a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the aid of an immersion medium arranged between a last optical element of the projection objective in the light path and the image plane, the last optical element has a transparent substrate and a protective layer system that is fitted to the substrate, is provided for contact with the immersion medium and serves for increasing the resistance of the last optical element to degradation caused by the immersion medium.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
A mask (20) for use in a microlithographic projection exposure apparatus (10) has a support (28) on which a pattern of opaque structures (32) is applied. The intermediate spaces (36, 36′) remaining between the structures (32c) are filled with a liquid or solid dielectric material (38, 38′). This increases the polarisation dependency of the diffraction efficiency, so that the mask can be used as a polarizer.
摘要:
A projection exposure system and a method for operating a projection exposure system for microlithography with an illumination system are disclosed. The illumination system includes at least one variably adjustable pupil-defining element. The illumination stress of at least one optical element of the projection exposure system is determined automatically in the case of an adjustment of the at least one variably adjustable pupil-defining element. From the automatically determined illumination stress, the maximum radiant power of the light source is set or determined and/or in which an illumination system is provided with which different illumination settings can be made. Usage of the projection exposure system is recorded and, from the history of the usage, at least one state parameter of at least one optical element of the projection exposure system is determined.
摘要:
The disclosure relates to a method for compensating image errors, generated by intensity distributions in optical systems, such as in projection lens arrays of microlithography systems, and to respective optical systems, such as projection lens arrays of microlithography systems.
摘要:
Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9), including a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17) and a third partial objective (19) imaging the second intermediate image onto the image field (7). The second partial objective (15) has exactly one concave mirror (21) and at least one lens (23). The minimum distance between an optically utilized region of the concave mirror (21) and an optically utilized region of a surface (25)—facing the concave mirror—of a lens (23) adjacent to the concave mirror is greater than 10 mm.
摘要:
In a method for improving imaging properties of an illumination system or a projection objective of a microlithographic projection exposure apparatus, which comprises an optical element having a surface, the shape of the surface is measured directly at various points. To this end, a measuring beam is directed on the points, and the reflected or refracted beam is measured, e.g. using an interferometer. Based on deviations of the measured shape from a target shape, corrective measures are derived so that the imaging errors of the optical system are improved. The corrective measures may comprise a change in the position or the shape of the optical element being analyzed, or another optical element of the optical system. The target shape of the surface may, for example, be determined so that the optical element at least partially corrects imaging errors caused by other optical elements.
摘要:
A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
摘要:
A lithographic method of manufacturing a miniaturized device using a projection exposure system involves illuminating the object plane of an imaging optics of the projection exposure system with measuring light; detecting, for each of a plurality of locations on an image plane of the imaging optics, an angular distribution of an intensity of the measuring light traversing the image plane at the respective location; adjusting a telecentricity of the projection exposure system based on a selected patterning structure to be imaged and on the plurality of the detected angular distributions; disposing the selected pattern structure to be imaged in a region of the object plane of the imaging optics; disposing a substrate carrying a resist in a region of the image plane of the imaging optics and exposing the resist with imaging light using the projection exposure system with the adjusted telecentricity; and developing the exposed resist and processing the substrate with the developed resist.
摘要:
The disclosure relates to an optical projection arrangement that can be used to image a reticle onto a substrate. The projection arrangement includes reflective elements, by which a ray path is defined. A combination stop is in a pupil of the ray path. The combination stop has a first opening (aperture opening) for use as an aperture stop. The combination stop also has a second opening for allowing passage of a ray bundle of the ray path, such that the combination stop acts as a combined aperture stop and stray light stop. In addition, the disclosure relates to a corresponding combination stop for optical arrangements, as well as related systems, components and methods.