SEMICONDUCTOR PACKAGE WITH ISOLATED HEAT SPREADER

    公开(公告)号:US20210202357A1

    公开(公告)日:2021-07-01

    申请号:US16840407

    申请日:2020-04-05

    Abstract: A semiconductor package includes a metallic pad and leads, a semiconductor die attached to the metallic pad, the semiconductor die including an active side with bond pads opposite the metallic pad, a wire bond extending from a respective bond pad of the semiconductor die to a respective lead of the leads, a heat spreader over the active side of the semiconductor die with a gap separating the active side of the semiconductor die from the heat spreader, an electrically insulating material within the gap and in contact with the active side of the semiconductor die and the heat spreader; and mold compound covering the semiconductor die and the wire bond, and partially covering the metallic pad and the heat spreader, with the metallic pad exposed on a first outer surface of the semiconductor package and with the heat spreader exposed on a second outer surface of the semiconductor package.

    BUMP BOND STRUCTURE FOR ENHANCED ELECTROMIGRATION PERFORMANCE

    公开(公告)号:US20200035633A1

    公开(公告)日:2020-01-30

    申请号:US16047888

    申请日:2018-07-27

    Abstract: A microelectronic device has a pillar connected to an external terminal by an intermetallic joint. Either the pillar or the external terminal, or both, include copper in direct contact with the intermetallic joint. The intermetallic joint includes at least 90 weight percent of at least one copper-tin intermetallic compound. The intermetallic joint is free of voids having a combined volume greater than 10 percent of a volume of the intermetallic joint; and free of a void having a volume greater than 5 percent of the volume of the intermetallic joint. The microelectronic device may be formed using solder which includes at least 93 weight percent tin, 0.5 weight percent to 5.0 weight percent silver, and 0.4 weight percent to 1.0 weight percent copper, to form a solder joint between the pillar and the external terminal, followed by thermal aging to convert the solder joint to the intermetallic joint.

    Stress Buffer Layer in Embedded Package
    75.
    发明申请

    公开(公告)号:US20190385924A1

    公开(公告)日:2019-12-19

    申请号:US16008119

    申请日:2018-06-14

    Abstract: The disclosed principles provide a stress buffer layer between an IC die and heat spreader used to dissipate heat from the die. The stress buffer layer comprises distributed pairs of conductive pads and a corresponding set of conductive posts formed on the conductive pads. In one embodiment, the stress buffer layer may comprise conductive pads laterally distributed over non-electrically conducting surfaces of an embedded IC die to thermally conduct heat from the IC die. In addition, such a stress buffer layer may comprise conductive posts laterally distributed and formed directly on each of the conductive pads. Each of the conductive posts thermally conduct heat from respective conductive pads. In addition, each conductive post may have a lateral width less than a lateral width of its corresponding conductive pad. A heat spreader is then formed over the conductive posts which thermally conducts heat from the conductive posts through the heat spreader.

Patent Agency Ranking