Abstract:
A magnetic field system for producing an interruptible geometrically patterned magnetic field at a surface, including a surface member including a surface, a magnetic member situated exterior to the surface member, including a geometrically patterned array of magnets, the magnetic member being reversibly mounted in sufficient proximity to the surface member to produce a corresponding geometrically patterned magnetic field extending through the surface, the geometrically patterned array of magnets including magnets selected form the group consisting of permanent magnets, electromagnets, and a combination thereof, the geometrically patterned magnetic field being interruptible by the removal of the magnetic member to a location sufficiently distant from the surface member to withdraw the geometrically patterned magnetic field from the surface, or by the depowering of the powered electromagnets. A gravity separation system for separating and recovering metal particles from a liquid stream of suspended particles to be separated. A method for the gravity separation and recovery of metal particles from a liquid stream with a gravity recovery system.
Abstract:
A device and method for extracting particles contained in a ferrofluid medium are provided. Such methods may comprise suspending particles of different sizes in a ferrofluid medium and containing the ferrofluid medium in a cylindrical reservoir, and applying a first magnetic field to at least a portion of the reservoir. The first magnetic field is configured to indirectly exert a force on at least a portion of the particles of a predetermined size, and direct the portion of particles in a desired direction.
Abstract:
Systems, methods and devices are presented for extracting target particles within a ferrofluid medium. In some embodiments, a fluidic channel receives a flow of a mix of one or more types of target particles, where at least one magnetic field source is configured to react with the flow such that a force (indirect or direct) is placed on the particles of the mix, across the width and/or the height of the fluidic channel. An extraction opening placed on one wall is provided and configured to extract at least one type of target particle.
Abstract:
A cartridge for detection of target components in a liquid sample includes a sample chamber, at least two reservoirs that can be furnished with magnetic particles, and at least two corresponding sensitive zones in which solved magnetic particles and/or target components can be detected. When a magnetic actuation field of a given configuration is established in the sample chamber, the magnetic particles of different reservoirs migrate predominantly to different sensitive zones. Thus a mixing of magnetic particles can be avoided.
Abstract:
A centrifugal air cleaning system broadly comprises an insert cartridge including a housing, an inlet, one or more flow guides, a stator, a compression nozzle, an expansion nozzle, and an outlet. The flow guides guide air flowing into the inlet past the stator into the compression nozzle. The stator induces a rotational vortex into the air flow. Air with heavier particles in the air flow is urged to the outside of the rotational vortex. Air with lighter particles and cleaner air is urged to the inside of the rotational vortex. The compression nozzle and the expansion nozzle are aligned to cooperatively form an annular exhaust channel. The air with the heavier particles flows through the annular exhaust channel and the air with the lighter particles and the cleaner air flows to the expansion nozzle to the outlet.
Abstract:
Devices and methods for magnetophoretic analyte selection and concentration are described. Magnetically marked analytes (e.g., cells) may be separated out of a sample dynamically in flux, such that the magnetically marked analytes are present in a highly concentrated manner in a reduced sample volume. The analyte selection may be followed by an analysis.
Abstract:
An apparatus includes a placer-gold processing system, including: (A) an upstream section; (B) a gold-concentrator assembly being configured to be in fluid communication with the upstream section; (C) a gold-detection assembly being configured to be in fluid communication with the gold-concentrator assembly; and (D) a magnetite-separator assembly being configured to be in fluid communication with the gold-concentrator assembly.
Abstract:
A system for holding sample tubes used in immunoprecipitation and similar laboratory techniques. A rack comprises top and bottom plates spaced apart from each other and defining rows of holes to receive the sample tubes and hold the sample tubes in a pair of spaced-apart rows. A magnet holder is configured to slide between the top and bottom plates and between the two parallel rows of sample tubes such that when the magnet holder is fully inserted between the rows of sample tubes, magnets held by the magnet holder align with the sample tubes in the two parallel rows.
Abstract:
An apparatus and method for removing solids and particulates from fluid by magnetic separation. First and second spaced rotatable drums move a closed loop belt. A portion of the belt is disposed in contact with the fluid flowing through a fluid passage disposed adjacent to a circumferential portion of the first rotatable drum where solids and particulates in the fluid are attracted to the belt by magnetic attraction from a magnetic source within the first rotatable drum. A wiper scrapes the solids deposited on the belt.
Abstract:
An apparatus is disclosed for separating minerals in drilling fluid based primarily on density. The separator creates and maintains a slurry with a controllable density for separating minerals from drill cuttings. The density is controlled through the use of an electric coil and magnets to create a magnetic field or electrode array. The separator comprises a primary separation chamber containing the dense slurry, and a multiple number of secondary separation chambers used to separate cuttings from the drilling fluid. The invention also contains inlet hardware allowing the mixed mineral suspension to enter the first separation chamber, and hardware allowing the three outlet (separated) streams to exit the device. One of the three outlet streams carries the minerals that have a density greater than the user selectable density set point, while the second carries the minerals that have a density less than the density set point, and the third carries clean drilling fluid.