Abstract:
Microtextured elastomeric laminate tape comprising a laminate with at least one elastomeric layer and at least one thin skin layer, and an adhesive layer, preferably prepared by coextrusion of the layers followed by stretching the laminate past the elastic limit of the skin layers and then allowing the laminate tape to recover.
Abstract:
A tape comprising a biaxially-oriented backing made from a polymeric film bearing on one major surface thereof a layer of pressure-sensitive adhesive and on the other major surface thereof a layer of low-adhesive backsize composition. The backing and the layer of pressure-sensitive adhesive intermix so as to form a commingled layer between them. This invention also provides a process of preparing pressure-sensitive adhesive tape comprising the steps of (1) providing an extruded polymeric film backing, (2) orienting said backing in the machine direction, (3) applying a low-adhesive backsize layer to one major surface of said backing, (4) applying a pressure-sensitive adhesive layer to the major surface of said backing not bearing the low-adhesion backsize layer, (5) orienting the layer-bearing backing in the transverse direction by heating and cross-stretching the layer-bearing backing, (6) winding the machine direction oriented, transverse direction oriented, layer-bearing backing onto a roll, and (7) optionally, converting the machine direction oriented, transverse direction oriented, layer-bearing backing to form a tape.
Abstract:
Film-backed pressure-sensitive adhesive tape that resembles conventional creped paper-backed masking tape but can be torn cleanly with the fingers, is prepared by extruding an isotactic polypropylene film, passing it through the nip between a rubber roll and a water-cooled embossed steel roll at a temperature and rate such that predominantly crystalline film is obtained. The embossed roll imparts a ridge-and-valley configuration to one surface of the film, valleys extending crosswise of the tape and having a depth greater than half the total film thickness. When the smooth face of the film is coated with pressure-sensitive adhesive, the resultant tape can be torn readily, using only the fingers, in a straight line crosswise of the tape. When subjected to a stretching force in the machine direction (at right angles to the ridges and valleys), the tape elongates uniformly without "necking down." A specific embodiment of this invention is a sterilization indicator tape made with the above described film.
Abstract:
A method of separating two substrates bonded with a redetachable, at least single-sidedly pressure-sensitive adhesive strip composed at least of a) a core layer which has a breaking extension of at least 300%, b) an outer carrier layer which has a breaking extension of not more than 120% and which at least sectionally is connected to the core layer such that it separates from the core layer when the latter is extensionally stretched, and c) a first adhesive layer which is applied at least sectionally to the side of the outer carrier layer that is opposite the side connected to the core layer, in which the core layer is stretched in the direction of the bond plane, starting from a region which has been made nonadhesive, until the core layer releases from at least one of the outer carrier layers so that the two substrates are separated from one another.
Abstract:
A method of separating two substrates bonded with a redetachable, at least single-sidedly pressure-sensitive adhesive strip composed at least of a) a core layer which has a breaking extension of at least 300%, b) an outer carrier layer which has a breaking extension of not more than 120% and which at least sectionally is connected to the core layer such that it separates from the core layer when the latter is extensionally stretched, and c) a first adhesive layer which is applied at least sectionally to the side of the outer carrier layer that is opposite the side connected to the core layer, in which the core layer is stretched in the direction of the bond plane, starting from a region which has been made nonadhesive, until the core layer releases from at least one of the outer carrier layers so that the two substrates are separated from one another.
Abstract:
Stretch release articles and fasteners comprising an elastic backing having pressure sensitive adhesive on one side of the elastic backing and bonds or bond elements not formed from pressure sensitive adhesive on the other side of the elastic backing. The pattern of pressure sensitive adhesive on the one side and the pattern of bonds or bonding elements on the other side do not substantially overlap when projected onto a common reference plane that is coplanar with the elastic backing. The stretch release articles and fasteners can be used in a variety of applications, including medical, industrial and consumer products.
Abstract:
A auxiliary adhesive tape is used as a removal aid for removing an elastic, double-sided adhesive film which can be removed, without leaving any residue or causing any destruction, by means of stretching and elongation in the bond plane, wherein said adhesive film has at least one end which is designed as a catch, wherein an object is attached by means of the same, and the same works by means of being pulled at a removal angle of >45° around an edge of the attached object. The auxiliary adhesive tape in this case is adhered around this edge and is a single-sided adhesive tape having a carrier, wherein the carrier satisfies at least one of the two properties below: a) the carrier consists of a low-energy polymer, b) the carrier has a structured surface.
Abstract:
This application relates to adhesives for use in electronic devices. Specifically, the embodiments discussed herein set forth stretch release conductive adhesives for adhering an electrical component to the surface of a housing of a computing device while also allowing current to flow through the electrical component. A stretch release conductive adhesive can include a graspable portion for providing a means to stretch and remove the stretch release conductive adhesive from an electronic device.
Abstract:
A stretch release adhesive is disclosed. The stretch release adhesive can be used for extracting an electrical component from an interior surface of a housing of a mobile computing device. The stretch release adhesive can have a double-sided adhesive body configured to adhere the component to the interior surface of the housing. A portion of the double-sided adhesive body is configured to extend out from between the electrical component and the interior surface of the housing to provide a graspable portion. When the stretch release adhesive is adhered between the electrical component and the internal surface of the housing, the stretch release adhesive can receive a pulling force at the graspable portion. If pulled with enough force, the stretch release adhesive will extend outwardly from between the electrical component and the internal surface of the mobile computing device, then completely release the electrical component from the mobile computing device.
Abstract:
Provided are adhesive articles and assemblies that include a flat and at least partially elastic backing along with a patterned adhesive coating on each side of the backing. When viewed from directions perpendicular to the backing, the adhesive on one side of the backing does not substantially overlap the adhesive on the opposing side of the backing. As a result, it is possible to use a stretch removable adhesive article that uses, for example, an aggressive adhesive to provide a reliable bond but still remove cleanly and easily from delicate substrates that would otherwise be damaged or destroyed if bonded with conventional adhesive constructions.