Abstract:
A steel cord for the reinforcement of rubber products and the like has an open twisted structure comprised of 3 to 6 steel filaments each having an ellipsoidally helical shape, and has a particular tensile elongation under a load of 5 kg.
Abstract:
A reinforcement cable is formed of an assembly of strands. Each strand is formed of two wires wound around each other in the same direction, with a constant pitch whose length is less than 300 mm. The two wires have linear contact with each other in the form of a helix. These helices have the same direction and the same constant pitch length. The assembly is formed of two strands of the same length of pitch and wound in opposite directions and/or it is formed of two to four strands such that the assembly has the same length of pitch and wound in the same direction as one strand and, with respect to another strand, a different length of pitch and/or wound in an opposite direction.
Abstract:
A steel cord composed of a plurality of material wires intertwisted, having loosely intertwisted portions and tightly intertwisted portions alternately at regular intervals so as to facilitate penetration of a rubber compound into the central part thereof throughout its whole length and to ensure stability of twist.
Abstract:
An apparatus for producing an assembly of filamentary elements that are wound together in a helix includes a twisting device, a preforming device, and an assembling device. The twisting device is structured to twist at least first and second filamentary elements individually, such that each filamentary element is twisted separately from another filamentary element, to produce at least first and second twisted filamentary elements. The preforming device, which is arranged downstream of the twisting device, is structured to preform each of the twisted filamentary elements individually into separate preformed helixes, to produce at least first and second preformed helixes. The assembling device, which is arranged downstream of the preforming device, is structured to assemble the preformed helixes into an assembly.
Abstract:
Provided is a rope that can be used even by those not familiar with ropework and whose knots will not loosen or come apart. A rope with holes has at least three bonded parts obtained by bonding two cords together at fixed intervals, as well as two openings formed between adjacent bonded parts. The rope with holes can be easily tied with another rope by guiding the other rope through its openings and the knots will not loosen or come apart.
Abstract:
Provided are a reinforcement material, not causing undesired stress and having excellent shape stability characteristics, a rubber product using the material and a method for producing the product, and a pneumatic tire using the material and a method for producing the tire. The reinforcement material for rubber has a flat coil shape where, when the material is in a single free state, loop portions are partly superposed on each other in sequence, and is embedded in a rubber product such as a pneumatic tire.
Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
A pneumatic tire has at least the outermost one of a plurality of rubber layers between a carcass and tread reinforced with a plurality of steel cords. Each of these steel cords is a single-strand steel cord with an elongation at break of not less than 4% and at least one of its component wires does not form a common circumcircle with the remaining wires. The curve circumscribing cross sections of the constituent wires of each steel cord is not a true circle. High resistance to nail penetration is assured by arranging the steel cords in such a manner that, for a large majority of steel cords, the direction of maximum offset span of the circumscribing curve is substantially coincidental with the width direction of thec outermost layer of rubber.