Abstract:
A reinforcing steel cord for rubber products, such as steel belted radial tires or conveyor belts, is disclosed. This steel cord is improved in rubber penetration and ageing adhesive force relative to the rubber material. The steel cord is formed by twisting a plurality of brass coated external element wires around a flat and spirally twisted core, with the twisted direction of the core being the same as or opposite to that of the resulting steel cord. In the steel cord, the pitch of the twisted core is set to allow the core to be twisted 0.2 to 2 times within the pitch of the cord, thus preferably forming sufficient interspaces between the core and the external wires in addition to the interspaces between the external wires. Since the rubber material is completely filled in the steel cord due to such interspaces, the steel cord is remarkably improved in buckling fatigue resistance, rubber penetration, air permeability, rubber adhesive force, ageing adhesive force relative to rubber, protection of brass coated surfaces of wires, and workability during a process of producing rubber products. The steel cords of this invention are most preferably used as a reinforcing material for steel belted radial tires.
Abstract:
A steel cord for a tire which increases a corrosion resistance and durability and improves the energy efficiency during curing of the tire and a radial tire using the same. This steel cord has an mnulln twist structure comprising a core containing m pieces of wires and a sheath containing n pieces of wires, in which a rubber compound or an elastomer compound is filled into a space between the core and the sheath. Otherwise, the steel cord has a 1nullN twist structure containing N pieces of wires, in which a rubber compound or an elastomer compound is filled into a space at a cord center surrounded by the N pieces of wires.
Abstract:
A steel cord (10) adapted for the reinforcement of elastomers, comprises individual steel filaments (12, 14). Some of these steel filaments (12) have a difference in torsion saturation level in comparison with other steel filaments (14). All of the individual steel filaments have a predetermined number of residual torsions and are preferably free of residual torsions. Such a steel cord is manufactured by making use of two false twisters.
Abstract:
A multi-wire structure comprising an inner core member and one or more strips of flat wire wrapped helically about the core member. Each flat wire is helically twisted about its longitudinal axis by forming means to permanently deform it prior to being wrapped about the core member.
Abstract:
A wire rope has a lubricated core, an inner jacket in contact with the core, and outer strands wrapped around the inner jacket. An outer jacket surrounds the outer strands and contacts the inner jacket to form an integrated jacket. A method of forming an integrated jacket for a wire rope in which an inner jacket is cold applied and an outer jacket is applied by application of molten material to the inner jacket.
Abstract:
Method of manufacturing a multi-layer metal cord having a plurality of concentric layers of wires, comprising one or more inner layer(s) and an outer layer, of the type “rubberized in situ. The method includes the following steps: at least one step of sheathing at least one inner layer with the rubber or the rubber composition by passing through at least one extrusion head; and an assembling step in which the wires of the outer layer are assembled around the inner layer adjacent to it, in order to form the multi-layer cord thus rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer extruded in the molten state, preferably a thermoplastic elastomer of the thermoplastic stirene (TPS) elastomer type such as an SBS, SBBS, SIS or SBIS block copolymer for example.
Abstract:
A tire with a radial carcass reinforcement made up of at least one layer of metal reinforcing elements, the tire comprising a crown reinforcement itself capped radially with a tread, the tread being connected to two beads via two sidewalls. At least 70% of the metal reinforcing elements of at least one layer of the carcass reinforcement are non wrapped cables which, in what is known as the air-wicking test, display a flow rate of less than 2 cm3/min, and at least 10% of the metal reinforcing elements of the at least one layer of the carcass reinforcement are cables which, in what is known as the air-wicking test, display a flow rate of greater than 4 cm3/min.
Abstract:
A wire strand (10) comprises a plurality of wires (12, 16, 20). The wires comprise a central king wire (12), a first layer (14) of wires (16) arranged around the king wire, and a second layer (18) of wires (20) arranged around the first layer. The king wire is formed of steel having a carbon content of at least 0.3 wt %. Each wire of the first layer is formed of steel having a carbon content which is less than the carbon content of the king wire. Each wire of the second layer is formed of steel having a carbon content which is greater than, or the same as, the carbon content of the wires of the first layer.