Abstract:
The present invention provides a cable-type secondary battery capable of wireless charge. The cable-type secondary battery according to the present invention can be applied in a wireless charging method, thereby being conveniently charged as compared with conventional batteries which are charged with wires, and has a charging coil configured in a wound form, which can overcome the problem of local charge caused by the shape of conventional cable-type batteries. Also, the charging coil is formed in a packaging to act as a reinforcement material, thereby enhancing the mechanical property of the cable-type secondary battery.
Abstract:
According to one embodiment, there is provided a battery. The battery includes a metallic outer can, a wound electrode group, a positive electrode-lead, a negative electrode-lead, a positive electrode insulating cover, and a negative electrode insulating cover.
Abstract:
Disclosed herein is a battery module assembly including two or more battery modules having cell units, each of which includes one or more battery cells having insulating tape at least partially attached to an outer circumference thereof excluding electrode terminals thereof, electrically connected to one another, a pair of an upper case and a lower case to surround an upper part and a lower part of the battery modules in a state in which the battery modules are erected on their sides, a bus bar assembly disposed at a front of the battery modules to electrically connect the battery modules to one another, and fastening holes formed at a top of the upper case and a bottom of the lower case to position or fix the battery module assembly.
Abstract:
A method for producing a housing for a galvanic element includes forming a metal base housing to improve the insulation properties of the housing and gluing an insulation film to at least one outer surface of the base housing.
Abstract:
A battery pack that includes a secondary battery, a resin structure including the secondary battery, and a flat-shaped, contactless power transfer coil embedded at a first face side of the resin structure. The resin structure contains a magnetic material at least at the first face side thereof.
Abstract:
A lithium ion (Li-ion) battery module includes a container with one or more partitions that define compartments within the container. Each of the compartments is configured to receive and hold a prismatic Li-ion electrochemical cell element and electrolyte. The Li-ion battery module also includes a cover configured to be disposed over the container to close the compartments. The container includes an electrically nonconductive polymeric material (e.g., plastic) with a nanomaterial applied to the polymeric material. The nanomaterial enhances the impermeability of the container to reduce ingress of moisture into the compartments and to reduce egress of the electrolyte from the compartments.
Abstract:
A lithium ion (Li-ion) battery cell includes a housing. The housing includes side walls coupled to and extending from a first portion of the housing to form an opening in the housing opposite the first portion of the housing. The housing includes an electrically nonconductive polymeric (e.g., plastic) material. An electrochemical cell element is disposed in the housing and immersed in electrolyte that is also disposed in the housing. The Li-ion battery cell also includes a cover including an electrically nonconductive polymeric material. The cover is disposed over the opening in the housing and sealed to the housing via a seal. The seal is configured to resist or prevent ingress of moisture into the housing and to resist or prevent egress of the electrolyte from the housing.
Abstract:
A lithium ion (Li-ion) battery cell includes a prismatic housing that includes four sides formed by side walls coupled to and extending from a bottom portion of the housing. The housing is configured to receive and hold a prismatic Li-ion electrochemical cell element. The housing includes an electrically nonconductive polymeric (e.g., plastic) material. Additionally, a heat sink is overmolded by the polymeric material of the housing, such that the heat sink is retained in an outer portion of the sides of the housing and the heat sink is exposed along the bottom portion of the housing.
Abstract:
A flexible battery and a flexible electronic device including the flexible battery as a power source. The flexible battery includes a cell stack comprising a plurality of unit cells, and an external casing sealing the cell stack, wherein each of the unit cells comprises a negative electrode, a positive electrode, an electrolyte layer disposed between the negative electrode and the positive electrode, and a first polymer film at least partially surrounding the negative electrode, the positive electrode, and the electrolyte layer.
Abstract:
A rechargeable battery for preventing a safety device from being melted when a conductor penetrates is provided. The rechargeable battery includes an electrode assembly having a first electrode and a second electrode at both sides of a separator, a case housing the electrode assembly, a cap plate coupled to an opening of the case, a first electrode terminal and second electrode terminal that are installed in a terminal hole of the cap plate to be connected to the first electrode and the second electrode, respectively, and a safety device that is disposed between the electrode assembly and the case. The cap plate is electrically connected to one of the first electrode and the second electrode, and the safety device is electrically connected to the another of the first electrode and the second electrode. The safety device includes a plate portion and a protruded portion that protrudes from at least one surface of the plate portion.