Abstract:
Example embodiments utilize machines to model reservoir geometry having geological layers as 2.5D unstructured grids. Example embodiments include program products to simulate a reservoir by generating a reservoir data system, performing a numerical fluid flow simulation, and visualizing the simulation. Data system embodiments include data structures to model a reservoir geometry as laterally unstructured two-dimensional (2D) grids and associated layer depths defining z-lines to thereby define a 2.5D unstructured grid, including datasets for: vertices of the grid cells for the future grid top and bottom surfaces, a number and listing of vertices for each grid cell, cell center coordinates, and vertex adjacency information using a compressed sparse row format. Computer-implemented methods include projecting external and internal boundaries onto a future grid surface; generating 2D unstructured, e.g., Voronoi, grids, for the top and bottom surfaces; and generating z-lines of depths corresponding to reservoir layers to thereby generate 2.5D unstructured grids.
Abstract:
In one embodiment, there is provided a printed circuit board including a first rigid circuit board layer having a first signal trace arrayed on it, a second rigid circuit board layer having a second signal trace arrayed on it, a first signal path coupled between the first signal trace and the second signal trace, an electrostatic discharge device located between the first rigid circuit board layer and the second rigid circuit board layer, the electrostatic discharge device having a first electrode coupled to the first signal path, an electrostatic discharge reactance layer coupled to the first electrode, and a second electrode coupled to the electrostatic discharge layer but not coupled to the first signal path. The circuit board also having a ground plane, where the ground plane is coupled to the second electrode.
Abstract:
A multi-layer semiconductor element package structure with surge protection function includes a substrate unit, an insulated unit, a one-way conduction unit and a protection unit. The substrate unit has at least one top substrate, at least one middle substrate and at least one bottom substrate. The insulated unit has at least one first insulated layer filled between the top substrate and the middle substrate and at least one second insulated layer filled between the middle substrate and the bottom substrate. The one-way conduction unit has a plurality of one-way conduction elements electrically disposed between the top substrate and the middle substrate and enclosed by the first insulated layer. The protection unit has at least one protection element with anti surge current or anti surge voltage function electrically disposed between the middle substrate and the bottom substrate and enclosed by the second insulated layer.
Abstract:
One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
Abstract:
Various aspects provide for incorporating a VSDM into a substrate to create an ESD-protected substrate. In some cases, a VSDM is incorporated in a manner that results in the ESD-protected substrate meeting one or more specifications (e.g., thickness, planarity, and the like) for various subsequent processes or applications. Various aspects provide for designing a substrate (e.g., a PCB) incorporating a VSDM, and adjusting one or more aspects of the substrate to design a balanced, ESD-protected substrate. Certain embodiments include molding a substrate having a VSDM layer into a first shape.
Abstract:
A method includes providing a voltage switchable dielectric material having a characteristic voltage, exposing the voltage switchable dielectric material to a source of ions associated with an electrically conductive material, and creating a voltage difference between the source and the voltage switchable dielectric material that is greater than the characteristic voltage. Electrical current is allowed to flow from the voltage switchable dielectric material, and the electrically conductive material is deposited on the voltage switchable dielectric material. A body comprises a voltage switchable dielectric material and a conductive material deposited on the voltage switchable dielectric material using an electrochemical process. In some cases, the conductive material is deposited using electroplating.
Abstract:
A substrate device is designed by identifying one or more criteria for handling of a transient electrical event on the substrate device. The one or more criteria may be based at least in part on an input provided from a designer. From the one or more criteria, one or more characteristics may be determined for integrating VSD material as a layer within or on at least a portion of the substrate device. The layer of VSD material may be positioned to protect one or more components of the substrate from the transient electrical condition.
Abstract:
A wireless communication device, such as an RFID tag, is provided material that is dielectric, unless a voltage is applied that exceeds the materials characteristic voltage level. In the presence of such voltage, the material becomes conductive. The integration of such material into the device may be mechanical and/or electrical.
Abstract:
Various aspects provide for structures and devices to protect against spurious electrical events (e.g., electrostatic discharge). Some embodiments incorporate a voltage switchable dielectric material (VSDM) bridging a gap between two conductive pads. Normally insulating, the VSDM may conduct current from one pad to the other during a spurious electrical event (e.g., shunting current to ground). Some aspects include gaps having a gap width that is greater than 50% of a spacing between electrical leads connected to the pads. Some devices include single layers of VSDM. Some devices include multiple layers of VSDM. Various devices may be designed to increase a ratio of active volume (of VSDM) to inactive volume.
Abstract:
A composition of VSD material comprises a binder, and one or more types of particles that include a concentration of doped semiconductor particles.