Tunable laser and manufacturing method for tunable laser

    公开(公告)号:US10666014B2

    公开(公告)日:2020-05-26

    申请号:US16138648

    申请日:2018-09-21

    摘要: A wavelength tunable laser includes: a heating layer, a dielectric layer, reflectors, a transport layer, a support layer, and a substrate layer. The heating layer is located above the transport layer; the transport layer is located above the support layer, and the transport layer includes an upper cladding layer, a waveguide layer, and a lower cladding layer from top to bottom; the reflector is located in the transport layer; the support layer has a protection structure, where the protection structure forms a hollow structure together with the transport layer and the substrate layer, and the hollow structure has a support structure; and the substrate layer is located below the support layer. The heating layer, the reflector, and a part of the transport layer form a suspended structure to prevent heat dissipation. Thus thermal tuning efficiency can be improved, and power consumption can be lowered.

    TECHNIQUES FOR VERTICAL CAVITY SURFACE EMITTING LASER OXIDATION

    公开(公告)号:US20200076162A1

    公开(公告)日:2020-03-05

    申请号:US16122018

    申请日:2018-09-05

    摘要: Some embodiments relate to a method for manufacturing a vertical cavity surface emitting laser. The method includes forming an optically active layer over a first reflective layer and forming a second reflective layer over the optically active layer. Forming a masking layer over the second reflective layer, where the masking layer leaves a sacrificial portion of the second reflective layer exposed. A first etch is performed to remove the sacrificial portion of the second reflective layer, defining a second reflector. Forming a first spacer covering outer sidewalls of the second reflector and masking layer. An oxidation process is performed with the first spacer in place to oxidize a peripheral region of the optically active layer while leaving a central region of the optically active layer un-oxidized. A second etch is performed to remove a portion of the oxidized peripheral region, defining an optically active region. Forming a second spacer covering outer sidewalls of the first spacer, the optically active region, and the first reflector.

    SEMICONDUCTOR DEVICE, SEMICONDUCTOR LASER, AND METHOD OF PRODUCING A SEMICONDUCTOR DEVICE

    公开(公告)号:US20190393679A1

    公开(公告)日:2019-12-26

    申请号:US16334738

    申请日:2017-09-15

    发明人: MASAHIRO MURAYAMA

    摘要: [Object] To provide a semiconductor device, a semiconductor laser, and a method of producing a semiconductor device that are capable of sufficiently ensuring electrical connection between a transparent conductive layer and a semiconductor layer. [Solving Means] A semiconductor device according to the present technology includes: a first semiconductor layer; a second semiconductor layer; an active layer; and a transparent conductive layer. The first semiconductor layer has a first conductivity type, a stripe-shaped ridge being formed on a surface of the first semiconductor layer. A second width is not less than 0.99 and not more than 1.0 times a first width, a third width is not less than 0.96 and not more than 1.0 times the second width, and the transparent conductive layer has a uniform thickness within a range of not less than 90% and not more than 110% in a range of the third width, the first width being a width in a direction perpendicular to an extending direction of the ridge on a surface of the ridge on which the transparent conductive layer is formed, the second width being a width in the direction on a surface of the transparent conductive layer on a side of the ridge, the third width being a width in the direction on a surface opposite to the ridge of the transparent conductive layer.

    Vertically-coupled surface-etched grating DFB laser

    公开(公告)号:US10461504B2

    公开(公告)日:2019-10-29

    申请号:US16392780

    申请日:2019-04-24

    摘要: A VCSEG-DFB laser, fully compatible with MGVI design and manufacturing methodologies, for single growth monolithic integration in multi-functional PICs is presented. It comprises a laser PIN structure, in mesa form, etched from upper emitter layer top surface through the active, presumably MQW, gain region, down to the top surface of the lower emitter. Lower electrical contacts sit adjacent the mesa disposed on the lower emitter layer with upper strip contacts disposed atop the upper emitter layer on the mesa top. An SEG is defined/etched from mesa top surface, between the upper strip contacts, through upper emitter layer down to or into the SCH layers. Vertical confinement is provided by the SCH structure and the lateral profile in the bottom portion of the mesa provides lateral confinement. The guided mode interacts with the SEG by the vertical tail penetrating the SEG and evanescent field coupling to the SEG.