Abstract:
The present invention provides high efficiency targeted and marker-less single, double, triple, quadruple, and quintuple integrations by using CRISPR in host cells, including Pichia.
Abstract:
Methods and compositions for stabilization and subsequent hydrogenation of a microbial-derived immiscible olefin are described. The methods comprise separating immiscible olefin from a mixture comprising an aqueous solution, microbial cells and immiscible olefin thereby forming a crude olefin composition; purifying the crude olefin composition thereby forming a purified olefin composition; and adding a phenolic antioxidant to the purified olefin composition wherein the phenolic antioxidant is a phenol derivative containing an unfused phenyl ring with one or more hydroxyl substituents. The methods further comprise reacting the purified olefin composition with hydrogen in the presence of a hydrogen catalyst such that hydrogen saturates at least one double bond in the olefin. Hydrogenated compositions produced by the methods are further provided.
Abstract:
Provided herein is a gaseous isoprene composition comprising isoprene, carbon dioxide and water, wherein the isoprene is in an amount between about 0.1% and about 15% by volume; wherein the carbon dioxide is in an amount between about 0.04% and about 35% by volume; wherein the water is in an amount greater than about 70% of its saturation amount. Also provided herein is a liquid isoprene composition comprising isoprene in an amount of at least 65% by weight and carbon dioxide in an amount between about 0.01% and about 1% by weight.
Abstract:
Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
Abstract:
The present disclosure relates to the use of a maltose dependent degron to control stability of a protein of interest fused thereto at the post-translational level. The present disclosure also relates to the use of a maltose dependent degron in combination with a maltose-responsive promoter to control gene expression at the transcriptional level and to control protein stability at the post-translational level. The present disclosure also relates to the use of a stabilization construct that couples expression of a cell-growth-affecting protein with the production of non-catabolic compounds. The present disclosure further relates to the use of a synthetic maltose-responsive promoter. The present disclosure further provides compositions and methods for using a maltose dependent degron, a maltose-responsive promoter, and a stabilization construct, either alone or in various combinations, for the production of non-catabolic compounds in genetically modified host cells.
Abstract:
The present disclosure relates to the use of a maltose dependent degron to control stability of a protein of interest fused thereto at the post-translational level. The present disclosure also relates to the use of a maltose dependent degron in combination with a maltose-responsive promoter to control gene expression at the transcriptional level and to control protein stability at the post-translational level. The present disclosure also relates to the use of a stabilization construct that couples expression of a cell-growth-affecting protein with the production of non-catabolic compounds. The present disclosure further relates to the use of a synthetic maltose-responsive promoter. The present disclosure further provides compositions and methods for using a maltose dependent degron, a maltose-responsive promoter, and a stabilization construct, either alone or in various combinations, for the production of non-catabolic compounds in genetically modified host cells.
Abstract:
The thermoplastic elastomer composition of the present invention is a thermoplastic elastomer composition including a hydrogenated block copolymer (A) and a softening agent (B), the hydrogenated block copolymer (A) being a hydrogenated product of a block copolymer including a polymer block (a) composed of a constitutional unit derived from an aromatic vinyl compound and a polymer block (b) containing 1 to 100% by mass of a constitutional unit (b1) derived from farnesene and 99 to 0% by mass of a constitutional unit (b2) derived from a conjugated diene other than farnesene; a mass ratio of the polymer block (a) and the polymer block (b) [(a)/(b)] being 1/99 to 70/30; 50 mol % or more of carbon-carbon double bonds in the polymer block (b) being hydrogenated; and a content of the softening agent (B) being 20 to 2,000 parts by mass on the basis of 100 parts by mass of the hydrogenated block copolymer (A).
Abstract:
The present invention relates to a copolymer including a monomer unit (a) derived from isoprene and a monomer unit (b) derived from farnesene; a process for producing the copolymer including at least the step of copolymerizing isoprene with farnesene; a rubber composition including (A) the copolymer, (B) a rubber component and (C) carbon black; a rubber composition including (A) the copolymer, (B) a rubber component and (D) silica; a rubber composition including (A) the copolymer, (B) a rubber component, (C) carbon black and (D) silica; and a tire using the rubber composition at least as a part thereof.
Abstract:
Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, and a nuclease capable of causing a double-strand break near or within the genomic target site.
Abstract:
A thermoplastic elastomer composition comprising 100 parts by mass of a hydrogenated block copolymer (A) comprising a polymer block (a) consisting of a structural unit derived from an aromatic vinyl compound and a polymer block (b) comprising 1 to 100% by mass of a structural unit (b1) derived from farnesene and comprising 99 to 0% by mass of a structural unit (b2) derived from a conjugated diene other than farnesene, a mass ratio[(a)/(b)] of the polymer block (a) to the polymer block (b) being 1/99 to 70/30; and 5 to 300 parts by mass of a polar group-containing olefinic polymer (B), is excellent in flexibility and molding processability and capable of adhering to a ceramic, a metal, a synthetic resin, or the like even through a heat treatment at low temperatures (for example, 190° C. or lower) without requiring a primer treatment or the like.