Abstract:
Semiconductor devices and methods of manufacture thereof are disclosed. In a preferred embodiment, a method of manufacturing a semiconductor device includes providing a semiconductor wafer, forming at least one isolation structure within the semiconductor wafer, and forming at least one feature over the semiconductor wafer. A top portion of the at least one isolation structure is removed, and a liner is formed over the semiconductor wafer, the at least one feature, and the at least one isolation structure. A fill material is formed over the liner. The fill material and the liner are removed from over at least a portion of a top surface of the semiconductor wafer.
Abstract:
This invention presents a growth method for GaN based quantum wells red light LED structure by MOCVD epitaxy growth system, GaN based GaN/InGaN quantum wells red light LED structure material is obtained. The In mole fraction (x) for quantum well material InGaN is controlled between 0.1 and 0.5. This invention realizes the lumiscience of long wave length red light in group III nitrides. Aiming at the problem of difficulty in growing high In composition InGaN material, this invention solves this problem by controlling and adjusting the flux of organic Ga source and In source, growth temperature, time, and the flux of ammonia, and the mole ratio of N to Ga. By strictly controlling the conditions such as temperature and the flux ratio of reactant in the whole process, this invention determines the radiation wave length of quantum well, realizes the lumiscience of long wave length, and obtained GaN based GaN/InGaN quantum well red light LED structure.
Abstract:
Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.
Abstract:
Embodiments of the present disclosure provide stress optimization during manufacturing of dual embedded epitaxially grown (EPI) semiconductor structures using just two masks, such as nFET and pFET open for embedded epitaxial using SiC and SiGe, and separated halo implantation masks for both horizontal and vertical PC
Abstract:
A method of recognizing an object in an image is provided, the method comprises the following steps. The image having the object is provided, and principal traits of the object are encoded in order to generate a first trait code. The first trait code is compared with data stored in a database so as to obtain a plurality of differences. A minimum of the plurality of differences is found. This method can be applied to synthesize human faces.
Abstract:
Methods of manufacturing semiconductor devices and structures thereof are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming recesses in a first region and a second region of a workpiece. The first region of the workpiece is masked, and the recesses in the second region of the workpiece are filled with a first semiconductive material. The second region of the workpiece is masked, and the recesses in the first region of the workpiece are filled with a second semiconductive material.
Abstract:
Methods of fabricating semiconductor devices and structures thereof are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a gate material stack over a workpiece having a first region and a second region. A composition or a thickness of at least one of a plurality of material layers of the gate material stack is altered in at least the second region. The gate material stack is patterned, forming a first transistor in the first region and forming a second transistor in the second region. Altering the composition or the thickness of the at least one of the plurality of material layers of the gate material stack in at least the second region results in a first transistor having a first threshold voltage and a second transistor having a second threshold voltage, the second threshold voltage having a different magnitude than the first threshold voltage.
Abstract:
Semiconductor devices and methods of manufacturing thereof are disclosed. A preferred embodiment includes a semiconductor device comprising a workpiece, the workpiece including a first region and a second region proximate the first region. A first material is disposed in the first region, and at least one region of a second material is disposed within the first material in the first region, the second material comprising a different material than the first material. The at least one region of the second material increases a first stress of the first region.
Abstract:
The instant invention provides soluble fusion protein complexes and IL-15 variants that have therapeutic and diagnostic use, and methods for making thesuch proteins. The instant invention additionally provides methods of stimulating or suppressing immune responses in a mammal using the fusion protein complexes and IL-15 variants of the invention.
Abstract:
Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.