Abstract:
A method of forming a sensor for detecting gases and biochemical materials that can be fabricated at a temperature in a range from room temperature to 400° C., a metal oxide semiconductor field effect transistor (MOSFET)-based integrated circuit including the sensor, and a method of manufacturing the integrated circuit are provided. The integrated circuit includes a semiconductor substrate. The sensor for detecting gases and biochemical materials includes a pair of electrodes formed on a first region of the semiconductor substrate, and a metal oxide nano structure layer formed on surfaces of the pair electrodes. A heater is formed to perform thermal treatment to re-use the material detected in the metal oxide nano structure layer. Also, a signal processor is formed by a MOSFET to process a predetermined signal obtained from a quantity change of a current flowing through the pair of electrodes of the sensor. To form the sensor, the metal oxide nano structure layer is formed on surfaces of the pair of electrodes at a temperature in a range from room temperature to 400° C.
Abstract:
A thin film transistor (TFT) substrate that is capable of providing a wide viewing angle and high contrast ratio without a decrease is aperture ratio is presented. The TFT substrate may be, for example, used with a patterned vertical alignment (PVA) mode LCD. The TFT substrate includes gate lines and data lines extending in non-parallel directions and a pixel electrode formed in a pixel region. The pixel region has two transmission regions separated from each other by a reflection region, and at least one of the gate lines is formed in the reflection region. A storage capacitor may also be formed in the reflection region. This configuration avoids the use of a bridge region between the two transmission regions that is responsible for aperture ratio decrease in the conventional configuration.
Abstract:
A backlight assembly includes a circuit board and a plurality of point light source groups. The plurality of point light source groups includes N point light sources that generate different respective colors and being arranged on the circuit board. Here, N is a number of point light sources. One light source group of the light source groups is rotated by an angle of predetermined degrees in a clockwise direction or a counter-clockwise direction with respect to another light source group that is adjacent to the one point light source group.
Abstract:
A light guide member for guiding light received from a light source unit, the light source unit illuminating light toward the light guide member, the light guide member may include a plurality of first grooves on a first side of the light guide member, the first grooves extending along a first direction, and a plurality of first projections projecting from surfaces of the first grooves.
Abstract:
Provided is a light emitting device and a method of controlling the same are disclosed. The light emitting unit includes a power supply unit for supplying a drive voltage to the light emitting unit, and a control unit for comparing a first current level previously applied to the light emitting unit with a second current level to be applied to the light emitting unit in accordance with image information to be displayed using the light emitting unit, and controlling a voltage level applied to the light emitting unit based on a result of comparison.
Abstract:
A display apparatus includes a display panel, a driving part, a gate driving part and a gate selecting part. The display panel has source lines and gate lines intersecting the source lines. The driving part converts original data signals received through an interlaced scan method into analog-type data voltages and outputs the data voltages to the source lines. The gate driving part sequentially outputs gate signals. The gate selecting part selectively outputs the gate signals to odd-numbered gate lines and even-numbered gate lines corresponding to the data voltages output to the source lines.
Abstract:
A continuous butt welding method using plasma and laser, and a method for fabricating a metal tube using the butt welding method are disclosed. The butt welding method conducts a laser welding and a plasma welding together against an object to be welded, which has a very narrow butt space. In particular, the plasma is prior to the laser so that the object is preheated by the plasma, and then a preform is melted by a laser beam in order to accomplish the major welding. In addition, a metal sheet is bent to have a circular section so that its both ends are faced with each other, and then the faced both ends are welded using the aforementioned butt welding method, thereby fabricating a metal tube. The butt welding method and the metal tube fabricating method mentioned above remarkably improve a welding speed and productivity of metal tube.
Abstract:
A light emitting apparatus and control method are provided. The light-emitting apparatus includes a light emitting part; a power supplying part; a switching part which is serially coupled to the light emitting part; and a control part which compares a switch voltage level with a comparison level, and controls the power supplying part to supply the driving power having a voltage level decreased by a reference level if the switch voltage level is higher than the comparison level. The control method includes supplying a driving power to the light emitting part; emitting light; measuring a switch voltage level across the switching part, and decreasing a voltage level of the driving power by a reference level if the switch voltage level is higher than the comparison level.
Abstract:
Provided is a method of fabricating a CMOS transistor in which, after a polysilicon layer used as a gate is formed on a semiconductor substrate, a photoresist pattern that exposes an n-MOS transistor region is formed on the polysilicon layer. An impurity is implanted in the polysilicon layer of the n-MOS transistor region using the photoresist pattern as a mask, and the photoresist pattern is removed. If the polysilicon layer of the n-MOS transistor region is damaged by the implanting of the impurity, the polysilicon layer of the n-MOS transistor region is annealed, and a p-MOS transistor gate and an n-MOS transistor gate are formed by patterning the polysilicon layer. The semiconductor substrate, the p-MOS transistor gate and the n-MOS transistor gate is cleaned with a hydrofluoric acid (HF) solution, without causing a decrease in height of the n-MOS transistor gate.
Abstract:
A method for estimating statistical distribution characteristics of physical parameters of a semiconductor device includes manufacturing a plurality of semiconductor device chips, each having a plurality of transistors, preparing electrical characteristic data by measuring electrical characteristics of the plurality of transistors included in the plurality of chips, extracting an inter-chip distribution characteristic and an intra-chip distribution characteristic of the electrical characteristics by analyzing the electrical characteristic data, generating random number data satisfying the extracted inter-chip and intra-chip distribution characteristics, and performing a simulation for extracting statistical distribution characteristic data of the physical parameters of the chips, based on the random number data.