摘要:
A method to produce a semiconductor laser diode (LD) including a sampled grating (SG) is disclosed. The method prepares various resist patterns each including grating regions and space regions alternately arranged along an optical axis. The grating regions and the space region in respective cavity types have total widths same with the others but the grating regions in respective types has widths different from others. After the formation of the grating patterns based on the resist patterns, only one of the grating patterns is used for subsequent processes.
摘要:
A manufacturing method according to an embodiment of this invention is a method of manufacturing a semiconductor device, which has: a first step of forming a first electrode 22 containing Ti or Ta on a top face of a nitride semiconductor layer 18; a second step of forming a second electrode 24 containing Al on a top face of the first electrode 22; a third step of forming a coating metal layer 26 covering at least one of an edge of a top face of the second electrode 24 and a side face of the second electrode 24, having a window 26a exposing the top face of the second electrode 24 in a region separated from the foregoing edge, and containing at least one of Ta, Mo, Pd, Ni, and Ti; and a step of performing a thermal treatment, after the third step.
摘要:
A bi-directional optical module that provides an Rx unit and a Tx unit, where optical axes are perpendicular to each other, is disclosed. The optical module provides a housing that installs a WDM filter therein and assembles the coupling unit in a surface through the front alignment unit, the Tx unit in another surface opposite to the former surface, and the Rx unit in still another surface connecting the former two surfaces through the rear alignment unit. The axes of the Tx unit and the coupling unit are in parallel to each other, but the axis of the Rx unit is in perpendicular to the former two axes. The Rx unit installs a photodiode (PD) with an optically sensitive surface leveled with the surface of the rear alignment unit to which the Rx unit is attached.
摘要:
An optical module that installs a plurality of laser diodes (LDs) and a composite prism to condense optical beams emitted from the LDs is disclosed. The LDs are arranged on a line so as to level the optical beams within a plane. The composite prism includes input surfaces and output surfaces each corresponding to respective one of the input surfaces. The composite prism outputs optical beams whose intervals are narrowed compared with intervals of the optical beams entering therein.
摘要:
A method of controlling a wavelength tunable laser to control an oscillation wavelength based on a difference between a detection result of a wavelength by a wavelength detecting unit and a target value, the method includes: acquiring a first drive condition of the wavelength tunable laser to make the wavelength tunable laser oscillate at a first wavelength from a memory; calculating a second drive condition to drive the wavelength tunable laser at a second wavelength by referring to the first drive condition and a wavelength difference between the first wavelength and the second wavelength, the second wavelength differing from the first wavelength; and driving the wavelength tunable laser based on the second drive condition calculated at the calculating of the second drive condition.
摘要:
A manufacturing method according to an embodiment of this invention is a method of manufacturing a semiconductor device, which has: a first step of forming a first electrode 22 containing Ti or Ta on a top face of a nitride semiconductor layer 18; a second step of forming a second electrode 24 containing Al on a top face of the first electrode 22; a third step of forming a coating metal layer 26 covering at least one of an edge of a top face of the second electrode 24 and a side face of the second electrode 24, having a window 26a exposing the top face of the second electrode 24 in a region separated from the foregoing edge, and containing at least one of Ta, Mo, Pd, Ni, and Ti; and a step of performing a thermal treatment, after the third step.
摘要:
A method to produce a semiconductor laser diode (LD) including a sampled grating (SG) is disclosed. The method prepares various resist patterns each including grating regions and space regions alternately arranged along an optical axis. The grating regions and the space region in respective cavity types have total widths same with the others but the grating regions in respective types has widths different from others. After the formation of the grating patterns based on the resist patterns, only one of the grating patterns is used for subsequent processes.
摘要:
A method for fabricating a semiconductor device includes: forming a first film on a nitride semiconductor layer so as to contact the nitride semiconductor layer and have a thickness equal to or larger than 1 nm and equal to or smaller than 5 nm, the first film being made of silicon nitride having a composition ratio of silicon to nitrogen larger than 0.75, silicon oxide having a composition ratio of silicon to oxygen larger than 0.5, or aluminum; and forming a source electrode, a gate electrode and a drain electrode on the nitride semiconductor layer.
摘要:
An optical module capable of monitoring an inner temperature thereof by a simple arrangement is disclosed. The optical module installs an avalanche photodiode (APD). The APD generates the first photocurrent under a bias where the APD shows the multiplication factor thereof M equal to the unity, and the second photocurrent under another bias where the multiplication factor becomes greater than the unity. The operating temperature of the laser diode (LD) may be estimated from a ratio of the first photocurrent to the second photocurrent.
摘要:
A manufacturing method according to an embodiment of this invention is a method of manufacturing a semiconductor device, which has: a first step of forming a first electrode 22 containing Ti or Ta on a top face of a nitride semiconductor layer 18; a second step of forming a second electrode 24 containing Al on a top face of the first electrode 22; a third step of forming a coating metal layer 26 covering at least one of an edge of a top face of the second electrode 24 and a side face of the second electrode 24, having a window 26a exposing the top face of the second electrode 24 in a region separated from the foregoing edge, and containing at least one of Ta, Mo, Pd, Ni, and Ti; and a step of performing a thermal treatment, after the third step.