Additive patterning of semiconductor film stacks

    公开(公告)号:US11049537B2

    公开(公告)日:2021-06-29

    申请号:US16525470

    申请日:2019-07-29

    Abstract: One or more embodiments described herein generally relate to patterning semiconductor film stacks. Unlike in conventional embodiments, the film stacks herein are patterned without the need of etching the magnetic tunnel junction (MTJ) stack. Instead, the film stack is etched before the MTJ stack is deposited such that the spin on carbon layer and the anti-reflective coating layer are completely removed and a trench is formed within the dielectric capping layer and the oxide layer. Thereafter, MTJ stacks are deposited on the buffer layer and on the dielectric capping layer. An oxide capping layer is deposited such that it covers the MTJ stacks. An oxide fill layer is deposited over the oxide capping layer and the film stack is polished by chemical mechanical polishing (CMP). The embodiments described herein advantageously result in no damage to the MTJ stacks since etching is not required.

    High pressure annealing process for metal containing materials

    公开(公告)号:US10998200B2

    公开(公告)日:2021-05-04

    申请号:US16262094

    申请日:2019-01-30

    Abstract: The present disclosure provides methods for performing an annealing process on a metal containing layer in TFT display applications, semiconductor or memory applications. In one example, a method of forming a metal containing layer on a substrate includes supplying an oxygen containing gas mixture on a substrate in a processing chamber, the substrate comprising a metal containing layer disposed on an optically transparent substrate, maintaining the oxygen containing gas mixture in the processing chamber at a process pressure between about 2 bar and about 50 bar, and thermally annealing the metal containing layer in the presence of the oxygen containing gas mixture.

    METHODS AND APPARATUS FOR DEPOSITING DIELECTRIC MATERIAL

    公开(公告)号:US20210090883A1

    公开(公告)日:2021-03-25

    申请号:US16578050

    申请日:2019-09-20

    Abstract: Methods and apparatus for depositing a dielectric material include: providing a first gas mixture into a processing chamber having a substrate disposed therein; forming a first remote plasma comprising first radicals in a remote plasma source and delivering the first radicals to an interior processing region in the processing chamber to form a layer of dielectric material in an opening in a material layer disposed on the substrate in a presence of the first gas mixture and the first radicals; terminating the first remote plasma and applying a first RF bias power to the processing chamber to form a first bias plasma; contacting the layer of dielectric material with the first bias plasma to form a first treated layer of dielectric material; and subsequently forming a second remote plasma comprising second radicals in the remote plasma source and delivering the second radicals to the interior processing region in the processing chamber in a presence of a second gas mixture while applying a second RF bias power to the processing chamber to form a second bias plasma, wherein the second radicals and second bias plasma contact the first treated layer of dielectric material to increase a hydrophobicity or a viscosity of the first treated layer of dielectric material.

Patent Agency Ranking