摘要:
A method for fabricating an integrated circuit comprising an electromigration barrier in a line of the integrated circuit includes forming a spacer; forming a segmented line adjacent to opposing sides of the spacer, the segmented line formed from a first conductive material; removing the spacer to form an empty line break; and filling the empty line break with a second conductive material to form an electromigration barrier that isolates electromigration effects within individual segments of the segmented line. An integrated circuit comprising an electromigration barrier includes a line, the line comprising a first conductive material, the line further comprising a plurality of line segments separated by one or more electromigration barriers, wherein the one or more electromigration barriers comprise a second conductive material that isolates electromigration effects within individual segments of the line.
摘要:
In one embodiment an anti-fuse structure is provided that includes a first dielectric material having at least a first anti-fuse region and a second anti-fuse region, wherein at least one of the anti-fuse regions includes a conductive region embedded within the first dielectric material. The anti-fuse structure further includes a first diamond like carbon layer having a first conductivity located on at least the first dielectric material in the first anti-fuse region and a second diamond like carbon layer having a second conductivity located on at least the first dielectric material in the second anti-fuse region. In this embodiment, the second conductivity is different from the first conductivity and the first diamond like carbon layer and the second diamond like carbon layer have the same thickness. The anti-fuse structure also includes a second dielectric material located atop the first and second diamond like carbon layers. The second dielectric material includes at least one conductively filled region embedded therein.
摘要:
An interconnect structure and methods for forming semiconductor interconnect structures are disclosed. In one embodiment, the interconnect structure includes: a substrate including a first liner layer and a first metal layer thereover; a dielectric barrier layer over the first metal layer and the substrate; an inter-level dielectric layer over the dielectric barrier layer; a via extending between the inter-level dielectric layer, the dielectric barrier layer, and the first metal layer, the via including a second liner layer and a second metal layer thereover; and a diffusion barrier layer located between the second liner layer and the first metal layer, wherein a portion of the diffusion barrier layer is located under the dielectric barrier layer.
摘要:
Disclosed is a method of making a semiconductor structure, wherein the method includes forming an interlayer dielectric (ILD) layer on a semiconductor layer, forming a conductive plating enhancement layer (PEL) on the ILD, patterning the ILD and PEL, depositing a seed layer into the pattern formed by the ILD and PEL, and then plating copper on the seed layer. The PEL serves to decrease the resistance across the wafer so to facilitate the plating of the copper. The PEL preferably is an optically transparent and conductive layer.
摘要:
A method comprises depositing a dielectric film layer, a hard mask layer, and a patterned photo resist layer on a substrate. The method further includes selectively etching the dielectric film layer to form sub-lithographic features by reactive ion etch processing and depositing a barrier metal layer and a copper layer. The method further includes etching the barrier metal layer and hard mask layer by gas cluster ion beam (GCIB) processing.
摘要:
A method of fabricating and a structure of an integrated circuit (IC) incorporating a porous dielectric layer are disclosed. A metal line is formed in the porous dielectric layer. A gas cluster ion beam process is applied to the porous dielectric layer so that an upper portion of the dielectric layer is densified to be not porous or non-interconnected low porous, while a lower portion of the porous dielectric layer still maintains its ultra-low dielectric constant after the gas cluster ion beam process.
摘要:
A chemical mechanical polishing (CMP) step is used to remove excess conductive material (e.g., Cu) overlying a low-k or ultralow-k interlevel dielectric layer (ILD) layer having trenches filled with conductive material, for a damascene interconnect structure. A reactive ion etch (RIE) or a Gas Cluster Ion Beam (GCIB) process is used to remove a portion of a liner which is atop a hard mask. A wet etch step is used to remove an oxide portion of the hard mask overlying the ILD, followed by a final touch-up Cu CMP (CMP) step which chops the protruding Cu patterns off and lands on the SiCOH hard mask. In this manner, processes used to remove excess conductive material substantially do not affect the portion of the hard mask overlying the interlevel dielectric layer.
摘要:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
摘要:
Self-aligned contacts in a metal gate structure and methods of manufacture are disclosed herein. The method includes forming a metal gate structure having a sidewall structure. The method further includes recessing the metal gate structure and forming a masking material within the recess. The method further includes forming a borderless contact adjacent to the metal gate structure, overlapping the masking material and the sidewall structure.
摘要:
Self-aligned contacts in a metal gate structure and methods of manufacture are disclosed herein. The method includes forming a metal gate structure having a sidewall structure. The method further includes recessing the metal gate structure and forming a masking material within the recess. The method further includes forming a borderless contact adjacent to the metal gate structure, overlapping the masking material and the sidewall structure.