Abstract:
Methods for preparing a FinFET device with a protection diode formed prior to M1 formation and resulting devices are disclosed. Embodiments include forming plural fins on a substrate, with a STI region between adjacent fins; forming a dummy gate stack over and perpendicular to the fins, the gate stack including a dummy gate over a dummy gate insulating layer; forming sidewall spacers on opposite sides of the dummy gate stack; forming source/drain regions at opposite sides of the dummy gate stack; forming an ILD over the STI regions between fins; removing the dummy gate stack forming a gate cavity; forming a gate dielectric in the gate cavity; removing the gate dielectric from the gate cavity in a protection diode area, exposing an underlying fin; implanting a dopant into the exposed fin; and forming a RMG in the gate cavity, wherein a protection diode is formed in the protection diode area.
Abstract:
A non-planar transistor is fabricated with dummy or sacrificial epitaxy and a structure for subsequent replacement or final epitaxy containment is created around the sacrificial epitaxy. The dummy epitaxy is then removed and replaced with the replacement epitaxy. The containment structure allows for uniform growth of the replacement epitaxy and prevents merger. Where n-type and p-type structures are present, the replacement epitaxy process is performed for each type, while protecting the other type with a mask. Optionally, one of the replacement epitaxies, i.e., the one for n-type or p-type, may be used as the dummy epitaxy, resulting in the need for only one mask.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a spacer integration scheme for both NFET and PFET devices and methods of manufacture. The structure includes: a plurality of epitaxial grown fin structures for NFET devices having sidewall spacers of a first dimension; and a plurality epitaxial grown fin structures for PFET devices having sidewall spacers of the first dimension.
Abstract:
Structures that include a metal-insulator-metal (MIM) capacitor and methods for fabricating a structure that includes a MIM capacitor. The MIM capacitor includes a first electrode, a second electrode, and a third electrode. A conductive via is arranged in a via opening extending in a vertical direction through at least the first electrode. The first electrode has a surface arranged inside the via opening in a plane transverse to the vertical direction, and the conductive via contacts the first electrode over an area of the surface.
Abstract:
At least one method, apparatus and system disclosed herein involves forming a sigma shaped source/drain lattice. A fin is formed on a semiconductor substrate. A gate region is formed over the fin. In a source region and a drain region adjacent bottom portions of the fin, a first recess cavity is formed in the source region, and a second recess cavity is formed in the drain region. The first and second recess cavities comprise sidewalls formed in an angle relative to a vertical axis. Portions of the first and second recess cavities extend below the fin. In the first recess cavity, a first rare earth oxide layer is formed, and in the second recess cavity, a second rare earth oxide layer is formed.
Abstract:
An asymmetric transistor may be used for controlling a memory cell. The asymmetric transistor may include at least one gate stack having bottom to top: a gate dielectric layer having a planar upper surface and a uniform thickness extending atop the entirety of the device channel, a dielectric threshold voltage adjusting element including: a sloped dielectric element located on the planar upper surface of the gate dielectric layer, and a sidewall dielectric layer extending from the sloped dielectric element along a first sidewall of the opening space, and a gate conductor located atop an upper surface of the sloped dielectric element and along a side of the sidewall dielectric layer. The dielectric threshold voltage adjusting element creates a threshold voltage that is lower in a writing mode than in a storage mode of the memory cell.
Abstract:
A method of forming semiconductor fins having different fin heights and which are dielectrically isolated from an underlying semiconductor substrate. The fins may be formed by etching an active epitaxial layer that is disposed over the substrate. An intervening sacrificial epitaxial layer may be used to template growth of the active epitaxial layer, and is then removed and backfilled with an isolation dielectric layer. The isolation dielectric layer may be disposed between bottom surfaces of the fins and the substrate, and may be deposited, for example, following the etching process used to define the fins. Within different regions of the substrate, dielectrically isolated fins of different heights may have substantially co-planar top surfaces.
Abstract:
A plurality of vertically oriented channel semiconductor structures is formed above a substrate. A bottom source/drain (S/D) region is formed proximate a lower portion of the vertically oriented channel semiconductor structure. A first dielectric layer is formed above the vertically oriented channel semiconductor structure. A thickness of the first dielectric layer is reduced to expose an upper portion of the vertically oriented channel semiconductor structure. A first semiconductor material region is formed on the exposed upper portion. The thickness of the first dielectric layer is further reduced to expose a channel portion of the vertically oriented channel semiconductor structure and to define a bottom spacer adjacent the bottom S/D region. A gate structure is formed around the channel region of the vertically oriented channel semiconductor structure. A second semiconductor material region is formed on the upper portion to define an upper S/D region after forming the gate structure.
Abstract:
A vertical fin field effect transistor includes a semiconductor fin disposed over a well region and a gate conductor layer disposed over a sidewall of the fin, and extending laterally over a top surface of the well region adjacent to the fin. The extension of the gate conductor over the bottom source/drain effectively increases the channel length of the vertical FinFET device independent of the fin height. A bottom source/drain region is laterally adjacent to the well region such that the portion of the well region covered by the laterally extended gate stack is between the bottom source/drain region and the portion of the well region immediately under the fin. A top source/drain region is located above the fin. The device is operated in circuits by use of electrical contacts to the bottom source/drain, the gate conductor, and the top source/drain.
Abstract:
A method of forming straight and narrow fins in the channel region and the resulting device are provided. Embodiments include forming Si fins separated by STI regions; recessing the STI regions to reveal the Si fins; forming a nitride layer over the STI regions and the Si fins; forming an OPL over the nitride layer between the Si fins; recessing the OPL to expose portions of the nitride layer over the Si fins; removing exposed portions of the nitride layer; removing the OPL; forming an oxide layer over exposed portions of the Si fins; forming a dummy gate over the nitride layer and the oxide layer perpendicular to the Si fins and surrounded by an ILD; removing the dummy gate and the oxide layer forming a cavity; thinning the Si fins in the cavity; and forming a RMG in the cavity.