摘要:
Generally, in one embodiment, the present disclosure is directed to a method for forming a transistor. The method includes: implanting a substrate to form at least one of an n and p doped region; depositing an epitaxial semiconductor layer over the substrate; forming trenches through the epitaxial layer and partially through at least one of an n and p doped region; forming dielectric isolation regions in the trenches; forming a fin in an upper portion of the epitaxial semiconductor layer by partially recessing the dielectric isolation regions; forming a gate dielectric adjacent at least two surfaces of the fin; and diffusing dopant from at least one of the n and p doped regions at least partially into the epitaxial semiconductor layer to form a diffusion doped transition region adjacent a bottom portion of the fin.
摘要:
One illustrative method disclosed herein includes, among other things, forming a fin in a semiconductor substrate and performing an epitaxial deposition process using a combination of silane (SiH4), dichlorosilane (SiH2Cl2), germane (GeH4) and a carrier gas to form an epi semiconductor material around the fin, wherein the flow rate of dichlorosilane used during the epitaxial deposition process is equal to 10-90% of the combined flow rate of silane and dichlorosilane.
摘要:
A vertical fin field effect transistor includes a semiconductor fin disposed over a well region and a gate conductor layer disposed over a sidewall of the fin, and extending laterally over a top surface of the well region adjacent to the fin. The extension of the gate conductor over the bottom source/drain effectively increases the channel length of the vertical FinFET device independent of the fin height. A bottom source/drain region is laterally adjacent to the well region such that the portion of the well region covered by the laterally extended gate stack is between the bottom source/drain region and the portion of the well region immediately under the fin. A top source/drain region is located above the fin. The device is operated in circuits by use of electrical contacts to the bottom source/drain, the gate conductor, and the top source/drain.
摘要:
At least one method, apparatus and system disclosed involves forming a finFET device having silicon and silicon germanium fins. The method includes: forming an n-doped and a p-doped region in a semiconductor wafer; forming a layer of silicon above both the those regions; removing a portion of the silicon layer above the p-doped region to create a first recess; forming a layer of silicon germanium in the first recess; etching away at least a portion of the silicon layer and the underlying p-doped region; etching away at least a portion of the silicon germanium layer and the underlying n-doped region; forming fins from the unetched silicon and silicon germanium layers; and forming a shallow trench isolation dielectric in the etched away portion of the silicon layer and the underlying p-doped region and in the etched away portion of the silicon germanium layer and the underlying n-doped region.
摘要:
Generally, the present disclosure is directed to a method for forming a FinFET device that may be used in designs that include both tight and relaxed fin pitches. The method for forming the fins includes: forming a first layer of doped silicate glass above a semiconductor wafer and within a plurality of recesses located adjacent the fins; forming a first layer of nitride above the first doped silicate glass layer; and forming a conformal oxide layer above the first nitride layer, substantially filling relatively narrow recesses between fins having a tight pitch and lining relatively wide recesses between fins having a relaxed pitch.
摘要:
At least one method, apparatus and system disclosed involves forming a finFET device having silicon and silicon germanium fins. The method includes: forming an n-doped and a p-doped region in a semiconductor wafer; forming a layer of silicon above both the those regions; removing a portion of the silicon layer above the p-doped region to create a first recess; forming a layer of silicon germanium in the first recess; etching away at least a portion of the silicon layer and the underlying p-doped region; etching away at least a portion of the silicon germanium layer and the underlying n-doped region; forming fins from the unetched silicon and silicon germanium layers; and forming a shallow trench isolation dielectric in the etched away portion of the silicon layer and the underlying p-doped region and in the etched away portion of the silicon germanium layer and the underlying n-doped region.
摘要:
Generally, in one embodiment, the present disclosure is directed to a method for forming a transistor. The method includes: implanting a substrate to form at least one of an n and p doped region; depositing an epitaxial semiconductor layer over the substrate; forming trenches through the epitaxial layer and partially through at least one of an n and p doped region; forming dielectric isolation regions in the trenches; forming a fin in an upper portion of the epitaxial semiconductor layer by partially recessing the dielectric isolation regions; forming a gate dielectric adjacent at least two surfaces of the fin; and diffusing dopant from at least one of the n and p doped regions at least partially into the epitaxial semiconductor layer to form a diffusion doped transition region adjacent a bottom portion of the fin.
摘要:
Generally, in one embodiment, the present disclosure is directed to a method for forming a transistor. The method includes: implanting a substrate to form at least one of an n and p doped region; depositing an epitaxial semiconductor layer over the substrate; forming trenches through the epitaxial layer and partially through at least one of an n and p doped region; forming dielectric isolation regions in the trenches; forming a fin in an upper portion of the epitaxial semiconductor layer by partially recessing the dielectric isolation regions; forming a gate dielectric adjacent at least two surfaces of the fin; and diffusing dopant from at least one of the n and p doped regions at least partially into the epitaxial semiconductor layer to form a diffusion doped transition region adjacent a bottom portion of the fin.
摘要:
Integrated circuits including a MIMCAP device and methods of forming the integrated circuits are provided. An exemplary method of forming an integrated circuit including a MIMCAP device includes pre-determining a thickness of at least one of a bottom high-K layer or a top high-K layer of the MIMCAP device, followed by fabricating the MIMCAP device. The pre-determined thickness is established based upon a pre-determined TDDB lifetime for the MIMCAP device and a minimum target capacitance density at an applied voltage bias to be employed for the MIMCAP device. The MIMCAP device includes a bottom electrode and a dielectric layer disposed over the bottom electrode. The dielectric layer includes a stack of individual layers including the bottom high-K layer, the top high-K layer, and a lower-K layer sandwiched therebetween. At least one of the bottom high-K layer or the top high-K layer has the pre-determined thickness.
摘要:
The disclosure is related to a band engineered semiconductor device comprising a substrate, a protruding structure that is formed in a recess in the substrate and is extending above the recess having a buried portion and an extended portion, and wherein at least the extended portion comprises a semiconductor material having an inverted ‘V’ band gap profile with a band gap value increasing gradually from a first value at lateral edges of the structure to a second value, higher than the first value, in a center of the structure. The disclosure is also related to the method of manufacturing of such band engineered semiconductor device.