摘要:
A design structure is provided for spacer fill structures and, more particularly, spacer fill structures, a method of manufacturing and a design structure for reducing device variation is provided. The structure includes a plurality of dummy fill shapes in different areas of a device which are configured such that gate perimeter to gate area ratio will result in a total perimeter density being uniform across a chip.
摘要:
Device structures and design structures for a static random access memory. The device structure includes a well of a first conductivity type in a semiconductor layer, first and second deep trench isolation regions in the semiconductor layer that laterally bound a device region in the well, and first and second pluralities of doped regions of a second conductivity type in the first device region. A shallow trench isolation region extends laterally across in the device region to connect the first and second deep trench isolation regions, and is disposed in the device region between the first and second pluralities of doped regions. The shallow trench isolation region extends from the top surface into the semiconductor layer to a first depth such that the well is continuous beneath the shallow trench isolation region. A gate stack controls carrier flow between a pair of the first plurality of doped regions.
摘要:
A method patterns pairs of semiconducting fins on an insulator layer and then patterns a linear gate conductor structure over and perpendicular to the fins. Next, the method patterns a mask on the insulator layer adjacent the fins such that sidewalls of the mask are parallel to the fins and are spaced from the fins a predetermined distance. The method performs an angled impurity implant into regions of the fins not protected by the gate conductor structure and the mask. This process forms impurity concentrations within the fins that are asymmetric and that mirror one another in adjacent pairs of fins.
摘要:
Disclosed herein are embodiments of a multiple fin fin-type field effect transistor (i.e., a multiple fin dual-gate or tri-gate field effect transistor) in which the multiple fins are partially or completely merged by a highly conductive material (e.g., a metal silicide). Merging the fins in this manner allow series resistance to be minimized with little, if any, increase in the parasitic capacitance between the gate and source/drain regions. Merging the semiconductor fins in this manner also allows each of the source/drain regions to be contacted by a single contact via as well as more flexible placement of that contact via.
摘要:
Disclosed are embodiments of a trigate field effect transistor that comprises a fin-shaped semiconductor body with a channel region and source/drain regions on either side of the channel region. Thick gate dielectric layers separate the top surface and opposing sidewalls of the channel region from the gate conductor in order to suppress conductivity in the channel planes. A thin gate dielectric layer separates the upper corners of the channel region from the gate conductor in order to optimize conductivity in the channel corners. To further emphasize the current flow in the channel corners, the source/drain regions can be formed in the upper corners of the semiconductor body alone. Alternatively, source/drain extension regions can be formed only in the upper corners of the semiconductor body adjacent to the gate conductor and deep source/drain diffusion regions can be formed in the ends of the semiconductor body.
摘要:
A FET has a shallow source/drain region, a deep channel region, a gate stack and a back gate that is surrounded by dielectric. The FET structure also includes halo or pocket implants that extend through the entire depth of the channel region. Because a portion of the halo and well doping of the channel is deeper than the source/drain depth, better threshold voltage and process control is achieved. A back-gated FET structure is also provided having a first dielectric layer in this structure that runs under the shallow source/drain region between the channel region and the back gate. This first dielectric layer extends from under the source/drain regions on either side of the back gate and is in contact with a second dielectric such that the back gate is bounded on each side or isolated by dielectric.
摘要:
A semiconductor device including semiconductor material having a bend and a trench feature formed at the bend, and a gate structure at least partially disposed in the trench feature. A method of fabricating a semiconductor structure including forming a semiconductor material with a trench feature over a layer, forming a gate structure at least partially in the trench feature, and bending the semiconductor material such that stress is induced in the semiconductor material in an inversion channel region of the gate structure.
摘要:
An apparatus and method for manufacturing rotated field effect transistors. The method comprises providing a substrate including a first gate structure and a second gate structure, which are not parallel to each other. The method further includes performing a first ion implant substantially orthogonal to an edge of the first gate structure to form a first impurity region and performing a second ion implant at a direction different than that of the first ion implant and substantially orthogonal to an edge of the second gate structure to form a second impurity region under the edge of the second gate structure.
摘要:
A fin-type field effect transistor (FinFET) has a fin having a center channel portion, end portions comprising source and drain regions, and channel extensions extending from sidewalls of the channel portion of the fin. The structure also includes a gate insulator covering the channel portion and the channel extensions, and a gate conductor on the gate insulator. The channel extensions increase capacitance of the channel portion of the fin.
摘要:
A FinFET device and a method of lowering a gate capacitance and extrinsic resistance in a field effect transistor, wherein the method comprises forming an isolation layer comprising a BOX layer over a substrate, configuring source/drain regions above the isolation layer, forming a fin structure over the isolation layer, configuring a first gate electrode adjacent to the fin structure, disposing a gate insulator between the first gate electrode and the fin structure, positioning a second gate electrode transverse to the first gate electrode, and depositing a third gate electrode on the fin structure, the first gate electrode, and the second gate electrode, wherein the isolation layer is formed beneath the insulator, the first gate electrode, and the fin structure. The method further comprises sandwiching the second gate electrode with a dielectric material. The fin structure is formed by depositing an oxide layer over a silicon layer.