Techniques for read operations
    81.
    发明授权

    公开(公告)号:US10726917B1

    公开(公告)日:2020-07-28

    申请号:US16254962

    申请日:2019-01-23

    Abstract: Methods, systems, devices, and techniques for read operations are described. In some examples, a memory device may include a first transistor (e.g., memory node transistor) configured to receive a precharge voltage at a first gate and output first voltage based on a threshold of the first transistor to a reference node via a first switch. The device may include a second transistor (e.g., a reference node transistor) configured to receive a precharge voltage and output a second voltage based on a threshold of the second transistor to a memory node via a second switch. The first voltage may be modified by a reference voltage and input to the second transistor. The second voltage may be modified by a voltage stored on a memory cell and input to the first transistor. The first and second transistor may output third and fourth voltages to be sampled to a latch.

    TECHNIQUES FOR READ OPERATIONS
    82.
    发明申请

    公开(公告)号:US20200234761A1

    公开(公告)日:2020-07-23

    申请号:US16254962

    申请日:2019-01-23

    Abstract: Methods, systems, devices, and techniques for read operations are described. In some examples, a memory device may include a first transistor (e.g., memory node transistor) configured to receive a precharge voltage at a first gate and output first voltage based on a threshold of the first transistor to a reference node via a first switch. The device may include a second transistor (e.g., a reference node transistor) configured to receive a precharge voltage and output a second voltage based on a threshold of the second transistor to a memory node via a second switch. The first voltage may be modified by a reference voltage and input to the second transistor. The second voltage may be modified by a voltage stored on a memory cell and input to the first transistor. The first and second transistor may output third and fourth voltages to be sampled to a latch.

    Reference voltage management
    83.
    发明授权

    公开(公告)号:US10692557B1

    公开(公告)日:2020-06-23

    申请号:US16381702

    申请日:2019-04-11

    Abstract: Techniques are described for maintaining a stable voltage difference in a memory device, for example, during a critical operation (e.g., a sense operation). The voltage difference to be maintained may be a read voltage across a memory cell or a difference associated with a reference voltage, among other examples. A component (e.g., a local capacitor) may be coupled, before the operation, with a node biased to a first voltage (e.g., a global reference voltage) to sample a voltage difference between the first voltage and a second voltage while the circuitry is relatively quiet (e.g., not noisy). The component may be decoupled from the node before the operation such that a node of the component (e.g., a capacitor) may be allowed to float during the operation. The voltage difference across the component may remain stable during variations in the second voltage and may provide a stable voltage difference during the operation.

    Self-boost, source following, and sample-and-hold for accessing memory cells

    公开(公告)号:US10475498B2

    公开(公告)日:2019-11-12

    申请号:US15653276

    申请日:2017-07-18

    Abstract: Methods, systems, and devices for operating a memory cell or cells are described. A capacitor coupled with an access line may be precharged and then boosted such that the charge stored in the capacitor is elevated to a higher voltage with respect to a memory cell. The boosted charge in the capacitor may support sensing operations that would otherwise require a relatively higher voltage. Some embodiments may employ charge amplification between an access line and a sense component, which may amplify signals between the memory cell and the sense component, and reduce charge sharing between these components. Some embodiments may employ “sample-and-hold” operations, which may re-use certain components of a sense component to separately generate a signal and a reference, reducing sensitivity to manufacturing and/or operational tolerances. In some embodiments, sensing may be further improved by employing “self-reference” operations that use a memory cell to generate its own reference.

    Variable filter capacitance
    85.
    发明授权

    公开(公告)号:US10475489B2

    公开(公告)日:2019-11-12

    申请号:US16020834

    申请日:2018-06-27

    Abstract: Methods, systems, and devices for variable filter capacitance are described. Within a memory device, voltages may be applied to access lines associated with two voltage sources to increase the capacitance provided by the access lines between the two voltage sources. In some cases, the access lines may be in electronic communication with capacitive cells that include a capacitive element and a selection component, and the voltage sources and access lines may be configured to utilize the capacitive elements and the capacitance between the access lines to generate an increase capacitance between the voltage sources. In some cases, decoders may be used to implement certain configurations that generate different capacitance levels. Similarly, sub-decoders may generate different capacitance levels by selecting portions of a capacitive array.

    Methods for phase-change memory array

    公开(公告)号:US10416909B2

    公开(公告)日:2019-09-17

    申请号:US16253087

    申请日:2019-01-21

    Abstract: Methods of operating phase-change memory arrays are described. A method includes determining a pattern to be written to a phase-change memory array and executing, according to the pattern, two or more proper reset sequences on the phase-change memory array to write the pattern to the phase-change memory array. Another method includes executing a set sequence on a phase-change memory array and performing a proper read of the phase-change memory array to obtain a pattern derived from executing the set sequence.

    Multiple plate line architecture for multideck memory array

    公开(公告)号:US10304513B2

    公开(公告)日:2019-05-28

    申请号:US16041455

    申请日:2018-07-20

    Abstract: Methods, systems, and devices for multiple plate line architecture for multideck memory arrays are described. A memory device may include two or more three-dimensional arrays of ferroelectric memory cells overlying a substrate layer that includes various components of support circuitry, such as decoders and sense amplifiers. Each memory cell of the array may have a ferroelectric container and a selector device. Multiple plate lines or other access lines may be routed through the various decks of the device to support access to memory cells within those decks. Plate lines or other access lines may be coupled between support circuitry and memory cells through on pitch via (OPV) structures. OPV structures may include selector devices to provide an additional degree of freedom in multideck selectivity. Various number of plate lines and access lines may be employed to accommodate different configurations and orientations of the ferroelectric containers.

Patent Agency Ranking