摘要:
A method for forming a semiconductor device is provided. A base layer is provided. A first epitaxial layer having a first dopant at a first concentration is formed above the base layer. A second epitaxial layer having a second dopant at a second concentration is formed above the first epitaxial layer. The second concentration is greater than the first concentration. A third epitaxial layer having a third dopant at a third concentration is formed above the second epitaxial layer. The third concentration is less than the second concentration. Ions are implanted in the third epitaxial layer to form an implant region. The implant region is in contact with the second epitaxial layer. A semiconductor device comprises a base layer, first, second, and third epitaxial layers, and an implant region. The first epitaxial layer has a first dopant at a first concentration disposed above the base layer. The second epitaxial layer has a second dopant at a second concentration disposed above the first epitaxial layer. The second concentration is greater than the first concentration. The third epitaxial layer has a third dopant at a third concentration disposed above the second epitaxial layer. The third concentration is less than the second concentration. The implant region is defined in the third epitaxial layer and is in contact with the second epitaxial layer.
摘要:
A method is provided for fabricating a semiconductor device on a structure, the method including forming a dielectric layer adjacent a gate conductor of the semiconductor device and above an LDD region of the structure and forming a first dielectric spacer adjacent a first portion of the dielectric layer adjacent the gate conductor and above a second portion of the dielectric layer above the LDD region. The method also includes introducing a dopant into a source/drain region of the structure and removing a third portion of the dielectric layer above the gate conductor, the second portion of the dielectric layer above the LDD region, and the first dielectric spacer. In addition, the method includes forming a first conductive layer above the gate conductor, adjacent the first portion of the dielectric layer and above the LDD region, and saliciding the first conductive layer above the gate conductor and above the LDD region to form a salicided first conductive layer.
摘要:
A method is provided for fabricating a semiconductor device on a structure, the method including forming a dielectric layer adjacent a gate conductor of the semiconductor device and above an LDD region of the structure and removing a first portion of the dielectric layer above the gate conductor and above the LDD region. The method also includes forming a first conductive layer above the gate conductor, adjacent the dielectric layer and above the LDD region and saliciding the first conductive layer above the gate conductor and above the LDD region to form a salicided first conductive layer.
摘要:
A semiconductor device having an elevated silicidation layer and process for fabricating such a device is provided. Consistent with one embodiment of the invention, at least one gate electrode is formed over a substrate and silicon is formed over at least one active region of the substrate adjacent the gate electrode. A layer of metal is then formed over the silicon. Using the metal layer and the silicon, a silicidation layer is formed over the active region. The active region may, for example, include a source/drain region. The ratio of the depth of the silicidation layer to the depth of the source/drain region may, for example, be greater than or equal to 0.75:1. In other embodiments, the ratio of the silicidation layer depth to source/drain region depth may be greater than or equal to 1:1, 1.5:1 or 2:1.
摘要:
The method disclosed herein comprises initially providing a tool comprised of a process chamber, a lid above the process chamber, an RF coil for assisting in generating a plasma in the chamber, a substrate support, and a power supply coupled to the substrate support. The method continues with the step of positioning a substrate in the tool adjacent the substrate support, introducing a noble gas into the chamber, and forming a layer of material above the substrate by sputtering the lid material by performing at least the following steps: applying approximately 200-300 watts of power to the RF coil at a frequency of approximately 400 KHz and applying approximately 20-60 watts of power to the substrate at a frequency of approximately 13.56 MHz.
摘要:
A semiconductor device includes a substrate, a gate structure, a plurality of sidewall spacers, and a plurality of first silicide layers. The gate structure is positioned above the substrate. The plurality of sidewall spacers are positioned adjacent to the gate structure. The first silicide layers are positioned in the substrate and have first ends that extend underneath the sidewall spacers. A method for forming a semiconductor device includes forming a gate structure above a substrate. A plurality of sidewall spacers are formed adjacent the gate structure. An implant material is disposed into the substrate using a tilted implantation process that is adapted to form first implant regions in the substrate. The implant regions have first ends that extend underneath the sidewall spacers by a first distance.
摘要:
Various methods of fabricating a silicide layer, and devices incorporating the same are provided. In one aspect, a method of fabricating a silicide layer on a substrate is provided. The method includes the steps of damaging the crystal structure of a portion of the substrate positioned beneath the spacer and depositing a layer of metal on the substrate. The metal layer and the substrate are heated to react the metal with the substrate and form the silicide layer, whereby a portion of the silicide layer extends laterally beneath the spacer. Any unreacted metal is removed. The method enables fabrication of silicide layers with substantial lateral encroachment into LDD structures, resulting in lower possible source-to-drain resistance and enhanced performance for transistors.
摘要:
A method for forming a local interconnect coupled to an active area of a semiconductor substrate is provided. The method comprises etching a local interconnect trench into an interlevel dielectric horizontally above the substrate. A titanium layer may be deposited across the semiconductor topography. A TiN diffusion layer is advantageously CVD deposited across the exposed surfaces of the titanium layer. A plasma containing N.sub.2 and H.sub.2 ions is used to bombard the surface of the TiN layer. The resulting TiN layer is conformal and has a low resistivity. A tungsten fill material is then deposited upon the TiN layer to a level above the dielectric. The tungsten adheres well to the TiN layer and is substantially free of voids. The TiN and the tungsten may be removed down to level commensurate with the surface of the dielectric. In this manner a local interconnect is formed electrically coupled to the active area.
摘要:
A broadband pyrometer is used for sensing temperature of a semiconductor wafer in an RTA system in association with a monochromator to cancel the backside characteristics of the semiconductor wafer. A rapid thermal anneal (RTA) system includes a rapid thermal anneal (RTA) chamber, a heating lamp arranged in the vicinity of the RTA chamber for heating interior to the RTA chamber, a broadband pyrometer disposed in the vicinity of the RTA chamber and directed to measure interior to the RTA chamber, and a grating monochromator connected to the broadband pyrometer.
摘要:
A resistor protect mask is used on a shallow trench isolation device junction to cover a device area except for a strip on the perimeter of the device area. The silicide layer formed on the central surface portion of the device and the strip area on the perimeter of the device upon which silicide formation is prevented forms a test structure for evaluation of junction formation that is immune from the effects of silicide formation on a device trench sidewall. Electrical tests and leakage measurements upon the test structure are compared directly to similar silicide shallow trench isolated devices which do not incorporate the resistor protect mask and shallow trench isolated devices without silicide to determine whether salicide processing is a cause of junction effects including junction leakage and short-circuiting.