摘要:
A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
摘要:
One example disclosed herein involves forming source/drain conductive contacts to first and second source/drain regions, the first source/drain region being positioned between a first pair of transistor devices having a first gate pitch dimension, the second source/drain region being positioned between a second pair of transistor devices having a second gate pitch dimension that is greater than the first gate pitch dimension, wherein the first and second pairs of transistor devices have a gate structure and sidewall spacers positioned adjacent the gate structure.
摘要:
One method disclosed includes, among other things, forming an overall fin structure having a stepped cross-sectional profile, the fin structure having an upper part and a lower part positioned under the upper part, wherein the upper part has a first width and the lower part has a second width that is less than the first width, forming a layer of insulating material in trenches adjacent the overall fin structure such that the upper part of the overall fin structure and a portion of the lower part of the overall fin structure are exposed above an upper surface of the layer of insulating material, and forming a gate structure around the exposed upper part of the overall fin structure and the exposed portion of the lower part of the overall fin structure.
摘要:
A method of forming a semiconductor device that includes forming a plurality of semiconductor pillars. A dielectric spacer is formed between at least one set of adjacent semiconductor pillars. Semiconductor material is epitaxially formed on sidewalls of the adjacent semiconductor pillars, wherein the dielectric spacer obstructs a first portion of epitaxial semiconductor material formed on a first semiconductor pillar from merging with a second portion of epitaxial semiconductor material formed on a second semiconductor pillar.
摘要:
Integrated circuits and methods of forming integrated circuits are provided. An integrated circuit includes a gate electrode structure overlying a base substrate. The gate electrode structure includes a gate electrode, with a cap disposed over the gate electrode and sidewall spacers disposed adjacent to sidewalls of the gate electrode structure. A source and drain region are formed in the base substrate aligned with the gate electrode structure. A first dielectric layer is disposed adjacent to the sidewall spacers. The sidewall spacers and the cap have recessed surfaces below a top surface of the first dielectric layer, and a protecting layer is disposed over the recessed surfaces. A second dielectric layer is disposed over the first dielectric layer and the protecting layer. Electrical interconnects are disposed through the first dielectric layer and the second dielectric layer, and the electrical interconnects are in electrical communication with the respective source and drain regions.
摘要:
One method disclosed includes, among other things, forming a raised isolation post structure between first and second fins, wherein the raised isolation post structure partially defines first and second spaces between the first and second fins, respectively, and forming a gate structure around the first and second fins and the raised isolation post structure, wherein at least portions of the gate structure are positioned in the first and second spaces. One illustrative device includes, among other things, first and second fins, a raised isolation post structure positioned between the first and second fins, first and second spaces defined by the fins and the raised isolation post structure, and a gate structure positioned around a portion of the fins and the isolation post structure.
摘要:
One example disclosed herein involves forming source/drain conductive contacts to first and second source/drain regions, the first source/drain region being positioned between a first pair of transistor devices having a first gate pitch dimension, the second source/drain region being positioned between a second pair of transistor devices having a second gate pitch dimension that is greater than the first gate pitch dimension, wherein the first and second pairs of transistor devices have a gate structure and sidewall spacers positioned adjacent the gate structure.
摘要:
One method includes performing an etching process through a patterned mask layer to form trenches in a substrate that defines first and second fins, forming liner material adjacent the first fin to a first thickness, forming liner material adjacent the second fin to a second thickness different from the first thickness, forming insulating material in the trenches adjacent the liner materials and above the mask layer, performing a process operation to remove portions of the layer of insulating material and to expose portions of the liner materials, performing another etching process to remove portions of the liner materials and the mask layer to expose the first fin to a first height and the second fin to a second height different from the first height, performing another etching process to define a reduced-thickness layer of insulating material, and forming a gate structure around a portion of the first and second fin.
摘要:
Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
摘要:
One method disclosed herein includes forming first and second gate cap protection layers that encapsulate and protect a gate cap layer. A novel transistor device disclosed herein includes a gate structure positioned above a semiconductor substrate, a spacer structure positioned adjacent the gate structure, a layer of insulating material positioned above the substrate and around the spacer structure, a gate cap layer positioned above the gate structure and the spacer structure, and a gate cap protection material that encapsulates the gate cap layer, wherein portions of the gate cap protection material are positioned between the gate cap layer and the gate structure, the spacer structure and the layer of insulating material.