Abstract:
Signals on a dielectric waveguide are filtered to pass or block selected frequencies. A combined signal is received in the DWG, wherein the combined signal comprises at least a first frequency signal with a first wavelength and a second frequency signal with a second wavelength. The combined signal is split into a first portion and a second portion. The first portion of the combined signal is delayed by an amount of delay time to form a delayed first portion. The delayed first portion is joined with the received combined signal to form a filtered signal such that the first frequency signal is enhanced by constructive interference while the second frequency signal is diminished by destructive interference. A portion of the filtered signal is provided to a receiver, whereby the amplitude of the second frequency signal is attenuated in the filtered signal.
Abstract:
A digital system has a dielectric core waveguide that is formed within a multilayer substrate. The dielectric waveguide has a longitudinal dielectric core member formed in the core layer having two adjacent longitudinal sides each separated from the core layer by a corresponding slot portion formed in the core layer The dielectric core member has the first dielectric constant value. A cladding surrounds the dielectric core member formed by a top layer and the bottom layer infilling the slot portions of the core layer. The cladding has a dielectric constant value that is lower than the first dielectric constant value.
Abstract:
A dielectric waveguide (DWG) may be used to identify a composition of a material that is in contact with the DWG. A radio frequency (RF) signal is transmitted into a dielectric waveguide located in contact with the material. The RF signal is received after it passes through the DWG. An insertion loss of the DWG is determined. The presence of the material may be inferred when the insertion loss exceeds a threshold value. The composition of the material may be inferred based on a correlation with the insertion loss. Alternatively, a volume of the material may be inferred based on a correlation with the insertion loss.
Abstract:
A dielectric waveguide (DWG) has a dielectric core member that has a length L and an oblong cross section. The core member has a first dielectric constant value. A dielectric cladding surrounds the dielectric core member; the cladding has a second dielectric constant value that is lower than the first dielectric constant. A conductive shield layer surrounds a portion of the dielectric cladding.
Abstract:
A packaged multi-output converter (200) comprising a leadframe with a chip pad (201) as ground terminal and a plurality of leads (202) including the electrical input terminal (203); a first FET chip (sync chip, 220) with its source terminal affixed to the leadframe and on its opposite surface a first drain terminal (221) positioned adjacent to a second drain terminal (222), the drain terminals connected respectively by a first (241) and a second (242) metal clip to a first (204) and second (205) output lead; a second FET chip (control chip, 211), positioned vertically over the first drain terminal, with its source terminal attached onto the first clip; a third FET chip (control chip, 212), positioned vertically over the second drain terminal, with its source terminal attached onto the second clip; and the drain terminals (213, 214) of the second and third chips attached onto a third metal clip (260) connected to the input lead (203).
Abstract:
An electronic device has a multilayer substrate that has an interface surface configured for interfacing to a dielectric waveguide. A conductive layer on the substrate is etched to form a dipole antenna disposed adjacent the interface surface to provide coupling to the dielectric waveguide. A reflector structure is formed in the substrate adjacent the dipole antenna opposite from the interface surface.
Abstract:
A described example includes: a semiconductor die mounted to a die pad of a package substrate, the semiconductor die having bond pads on a device side surface facing away from the die pad; bond wires coupling the bond pads of the semiconductor die to leads of the package substrate, the leads spaced from the die pad; an antenna positioned over the device side surface of the semiconductor die and having a feed line coupled between the antenna and a device side surface of the semiconductor die; and mold compound covering the semiconductor die, the bond wires, a portion of the leads, and the die side surface of the die pad, a portion of the antenna exposed from the mold compound.
Abstract:
A described example includes: an antenna formed in a first conductor layer on a device side surface of a multilayer package substrate, the multilayer package substrate including conductor layers spaced from one another by dielectric material and coupled to one another by conductive vertical connection layers, the multilayer package substrate having a board side surface opposite the device side surface; and a semiconductor die mounted to the device side surface of the multilayer package substrate spaced from and coupled to the antenna.
Abstract:
In a described example, an apparatus includes: a package substrate having a device side surface and a board side surface opposite the device side surface; a physics cell mounted on the device side surface having a first end and a second end; a first opening extending through the package substrate and lined with a conductor, aligned with the first end; a second opening extending through the package substrate and lined with the conductor, aligned with the second end; a millimeter wave transmitter module on the board side, having a millimeter wave transfer structure including a transmission line coupled to an antenna aligned with the first opening; and a millimeter wave receiver module mounted on the board side surface of the package substrate and having a millimeter wave transfer structure including a transmission line coupled to an antenna for receiving millimeter wave signals, aligned with the second opening.
Abstract:
A described example includes: an antenna formed in a first conductor layer on a device side surface of a multilayer package substrate, the multilayer package substrate including conductor layers spaced from one another by dielectric material and coupled to one another by conductive vertical connection layers, the multilayer package substrate having a board side surface opposite the device side surface; and a semiconductor die mounted to the device side surface of the multilayer package substrate spaced from and coupled to the antenna.