摘要:
An intermediate film 222 in a three-layered resist film 225 is formed by the chemical vapor deposition process at a temperature not higher than 300° C., using Si(OR1)(OR2)(OR3)(OR4), where each of R1, R2, R3 and R4 independently represents a carbon-containing group or a hydrogen atom, excluding the case where all of R1 to R4 are hydrogen atoms.
摘要:
A method of manufacturing a semiconductor device includes forming a first insulating film over an underlying film by plasma polymerization of cyclic siloxane, and forming a second insulating film on the first insulating film by plasma polymerization of the cyclic siloxane continuously, after forming the first insulating film. The deposition rate of the first insulating film is slower than the deposition rate of the second insulating film.
摘要:
A semiconductor device is manufactured by forming a first reinforcing insulating film and a first sacrificial interlayer. A first trench is formed and then filled with an interconnect covered with a cap metal. First and second sacrificial barrier dielectrics are formed, and the second sacrificial interlayer and the sacrificial barrier dielectric are selectively removed to form a hole exposing the cap metal. A conductive via connects the interconnect by forming a conductor in the hole, and a second cap metal covers the via. The interconnect exposes the via by selectively removing the sacrificial interlayers and dielectric. An insulating film covers the side wall and the upper portion of the interconnect, and the side wall of the conductive via which is connected to the interconnect from the side wall of the interconnect through the side wall of the via. An air-gap is provided in the insulating film.
摘要:
In a semiconductor device, an insulating interlayer having a groove is formed on an insulating underlayer. A silicon-diffused metal layer including no metal silicide is buried in the groove. A metal diffusion barrier layer is formed on the silicon-diffused metal layer and the insulating interlayer.
摘要:
A method of producing a semiconductor device includes forming, on a first insulating film formed on a substrate, a first groove in an element-forming region to form one of a via and a wiring therein, and a first seal ring groove in a seal ring part, forming one of a via and a wiring in the first groove and a first metal layer in the first seal ring groove, and then removing the metal material in a part exposed to an outside of the first groove and the first seal ring groove, forming a second insulating film on the first insulating film, forming, on the second insulating film, a second groove, and a second seal ring groove in the seal ring part on the first seal ring groove, and forming one of a via and a wiring in the second groove and a second metal layer.
摘要:
A method of manufacturing a semiconductor device, includes burying a conductive pattern in an insulating film made of SiOH, SiCOH or organic polymer, treating surfaces of the insulating film and the conductive pattern with plasma which includes a hydrocarbon gas as a treatment gas, and forming a diffusion barrier film, which is formed of an SiCH film, an SiCHN film, an SiCHO film or an SiCHON film, over the insulating film and the conductive pattern with performing a plasma CVD by adding an Si-containing gas to the treatment gas while increasing the addition amount gradually or in a step-by-step manner.
摘要:
An interconnect is provided in a first insulating layer and the upper surface of the interconnect is higher than the upper surface of the first insulating layer. An air gap is disposed between the interconnect and the first insulating layer. An etching stopper film is formed over the first insulating layer, the air gap, and the interconnect. A second insulating layer is formed over the etching stopper film. A via is provided in the second insulating layer and is connected to the interconnect. A portion of the etching stopper film that is disposed over the air gap is thicker than another portion that is disposed over the interconnect.
摘要:
A first gas including a silicon-containing compound is introduced into a vacuum chamber, to expose a semiconductor substrate placed in the chamber to the first gas atmosphere (silicon processing step). Then the pressure inside the vacuum chamber is reduced to a level lower than the pressure at the time of starting the silicon processing step (depressurizing step). Thereafter, a second gas including a nitrogen-containing compound is introduced into the vacuum chamber, and the semiconductor substrate is irradiated with the second gas plasma (nitrogen plasma step).
摘要:
When forming a silicon nitride film to protect and insulate a surface on which a silicon substrate has been ground or polishing, by use of a mixed gas containing SiH4, N2, and NH3 as a reaction gas, a film is formed by a single-frequency parallel-plate plasma CVD method. Thereby, even when the film forming temperature is made not more than an allowable temperature limit of an adhesive to adhere a support (for example, approximately 100° C. or less, which is an allowable temperature limit when the adhesive is an ultraviolet curing resin), a high-quality film without exfoliation in a CMP step of the following step and with less leakage can be formed. This high-quality film is, if being prescribed by a refractive index, a film whose refractive index with respect to a wavelength of 633 nm is approximately 1.8 through 1.9.
摘要翻译:当形成氮化硅膜以保护和绝缘其上已经研磨或抛光硅衬底的表面时,通过使用含有SiH 4 N 2 N 2的混合气体, 和NH 3作为反应气体,通过单频平行板等离子体CVD法形成膜。 因此,即使当成膜温度不大于粘合剂的粘合剂的允许温度极限时(例如约100℃或更低,这是当粘合剂是紫外线固化树脂时的允许温度极限) ),可以形成在后续步骤的CMP步骤中没有剥离并且具有较少泄漏的高质量膜。 如果由折射率规定,则该高品质膜的折射率相对于633nm的折射率为1.8〜1.9左右。
摘要:
When forming a silicon nitride film to protect and insulate a surface on which a silicon substrate has been ground or polishing, by use of a mixed gas containing SiH4, N2, and NH3 as a reaction gas, a film is formed by a single-frequency parallel-plate plasma CVD method. Thereby, even when the film forming temperature is made not more than an allowable temperature limit of an adhesive to adhere a support (for example, approximately 100° C. or less, which is an allowable temperature limit when the adhesive is an ultraviolet curing resin), a high-quality film without exfoliation in a CMP step of the following step and with less leakage can be formed. This high-quality film is, if being prescribed by a refractive index, a film whose refractive index with respect to a wavelength of 633 nm is approximately 1.8 through 1.9.
摘要翻译:当形成氮化硅膜以保护和绝缘其上已经研磨或抛光硅衬底的表面时,通过使用含有SiH 4 N 2 N 2的混合气体, 和NH 3作为反应气体,通过单频平行板等离子体CVD法形成膜。 因此,即使当成膜温度不大于粘合剂的粘合剂的允许温度极限时(例如约100℃或更低,这是当粘合剂是紫外线固化树脂时的允许温度极限) ),可以形成在后续步骤的CMP步骤中没有剥离并且具有较少泄漏的高质量膜。 如果由折射率规定,则该高品质膜的折射率相对于633nm的折射率为1.8〜1.9左右。