Abstract:
Steviol glycoside compositions comprising certain proportions of rebaudioside D, rebaudioside M, rebaudioside A, rebaudioside N, rebaudioside O, and rebaudioside E are provided. Sweetener compositions comprising the steviol glycoside compositions and additional substances are also provided. Consumables, particularly beverages and beverage products containing said steviol glycoside compositions, and sweetener compositions comprising the same, are also provided. Methods of preparing the sweetener compositions and consumables are also detailed herein.
Abstract:
Disclosed herein are sweetener compositions comprising at least one sweetener and at least one sweetness enhancer chosen from terpenes (such as sesquiterpenes, diterpenes, and triterpenes), flavonoids, amino acids, proteins, polyols, other known natural sweeteners (such as cinnamaldehydes, selligueians, hematoxylins), secodammarane glycosides, and analogues thereof, wherein the at least one sweetness enhancer is present in the composition in an amount at or below the sweetness detection threshold level of the sweetness ehancer, and the at least one sweetener and the at least one sweetness enhancer are different. Also disclosed herein are methods for enhancing sweetness of a composition, comprising combining at least one sweetener and at least one sweetness enhancer chosen from terpenes (such as sesquiterpenes, diterpenes, and triterpenes), flavonoids, amino acids, proteins, polyols, other known natural sweeteners (such as cinnamaldehydes, selligueians, hematoxylins), secodammarane glycosides, and analogues thereof, wherein the at least one sweetness enhancer is present in the composition in an amount at or below the sweetness detection threshold level of the at least one sweetness enhancer, and the at least one sweetener and the at least one sweetness enhancer are different.
Abstract:
Methods of preparing highly purified steviol glycosides, particularly rebaudiosides A, D and M are described. The methods include utilizing recombinant microorganisms for converting various staring compositions to target steviol glycosides. In addition, novel steviol glycosides reb D2 and reb M2 are disclosed, as are methods of preparing the same. The highly purified rebaudiosides are useful as non-caloric sweetener in edible and chewable compositions such as any beverages, confectioneries, bakery products, cookies, and chewing gums.
Abstract:
Methods of preparing highly purified steviol glycosides, particularly rebaudiosides A, D and X are described. The method includes expression of UDP-glucosyltransferases from Stevia rebaudiana Bertoni, which are capable converting certain steviol glycosides to rebaudiosides A, D and X. The highly purified rebaudiosides A, D and X, are useful as non-caloric sweetener in edible and chewable compositions such as any beverages, confectioneries, bakery products, cookies, and chewing gums.
Abstract:
Methods for purifying steviol glycosides, including Rebaudioside X, are provided herein. Sweetener and sweetened containing Rebaudioside X are also provided herein. Methods of improving the flavor and/or temporal profile of sweetenable compositions, such as beverages, are also provided.
Abstract:
The present invention relates generally to dairy compositions comprising non-caloric or low-caloric high-potency sweeteners and methods for making and using them. In particular, the present invention relates to different dairy compositions comprising at least one non-caloric or low-caloric natural and/or synthetic high-potency sweetener, at least one sweet taste improving composition, and a dairy product. The present invention also relates to dairy compositions and methods that can improve the tastes of non-caloric or low-caloric natural and/or synthetic, high-potency sweeteners by imparting a more sugar-like taste or characteristic. In particular, the dairy compositions and methods provide a more sugar-like temporal profile, including sweetness onset and sweetness linger, and/or a more sugar-like flavor profile.
Abstract:
The present invention relates generally to functional sweetener compositions comprising non-caloric or low-caloric natural and/or synthetic, high-potency sweeteners and methods for making and using them. In particular, the present invention relates to different functional sweetener compositions comprising at least one non-caloric or low-caloric natural and/or synthetic, high-potency sweetener, at least one sweet taste improving composition, and at least one functional ingredient, such as fatty acids. The present invention also relates to functional sweetener compositions and methods that can improve the tastes of non-caloric or low-caloric high-potency sweeteners by imparting a more sugar-like taste or characteristic. In particular, the functional sweetener compositions and methods provide a more sugar-like temporal profile, including sweetness onset and sweetness linger, and/or a more sugar-like flavor profile.
Abstract:
Novel mogrosides and compositions comprising said novel mogrosides, including consumables, are provided herein. Methods of obtaining said novel mogrosides from either purification and/or bioconversion, are also provided.
Abstract:
Methods of preparing freeze dried powders comprising rebaudioside M and rebaudioside D are provided herein. The freeze dried powders produced by the disclosed methods exhibit improved aqueous solubility over known forms and compositions of rebaudioside M and rebaudioside D. Methods of preparing consumables, e.g. beverages, with the freeze dried compositions are also detailed herein.
Abstract:
Stevia varieties with a high content of RebM, are disclosed Further provided are methods for producing Stevia plants having a high RebM content by negatively regulating certain genes selecting the resulting plants, and breeding with such plants to confer such desirable Reb M phenotypes to plant progeny.