Abstract:
A method for deriving precise control over laser power of an optical pickup unit (OPU) includes: providing an analog-to-digital converter (ADC) within an automatic power calibration (APC) circuit to derive a path gain and/or a path offset from the APC circuit; and selectively performing compensation according to the gain and/or the path offset, in order to maintain precision of a relationship between the laser power and a target command utilized for controlling the laser power. An associated APC circuit comprising an ADC and at least one compensation module is further provided. The ADC is utilized for deriving a path gain and/or a path offset from the APC circuit. The compensation module is utilized for selectively performing compensation according to the path gain and/or the path offset, in order to control the laser power by a target command.
Abstract:
A controller of an optical storage apparatus for generating a plurality of control signals is provided. The controller includes a code generator implemented for determining a plurality of control codes according to an input data associated with data recording, and generating the control signals to deliver the control codes. Each of the control codes represents one power level. Besides, regarding each of the control signals, a minimum transmission pulse length thereof corresponds to more than one power symbol period.
Abstract:
An automatic power control system, a down sampling circuit and a down sampling method. The automatic power control system is incorporated in an optical disc drive comprising a laser diode for receiving a control signal to generate a laser beam; and a photodetector for detecting the laser beam to generate an analog input signal. The automatic power control system comprises an analog-to-digital converter, a down sampling circuit, a comparator, and a digital-to-analog converter. The analog-to-digital converter converts the analog input signal to digital data. The down sampling circuit, coupled to the analog-to-digital converter, comprises a down sampler, a counter, and a controller. The down sampler receives a predetermined amount of digital data to generate representation data. The counter, coupled to the down sampler, calculates the amount of digital data, and resets the down sampler when the amount equals or exceeds the predetermined count. The controller, coupled to the counter, disables the counter when the digital data is invalid. The comparator, coupled to the down sampling circuit, compares the representation data with predetermined target data to generate error data. The digital-to-analog converter, coupled to the comparator, converts the error data to analog to generate the control signal.
Abstract:
A laser power control system and related method for reducing a settling time in a target laser power transition are disclosed. The laser power control system includes a state decision circuit, for generating a state decision signal according to a selected operational state of a target circuit; a plurality of buffers, for storing a plurality of control data corresponding to a plurality of candidate operational states of the target circuit respectively; and a multiplexer, coupled between the state decision circuit and the buffers, for coupling a selected buffer of the buffers and the target circuit according to the state decision signal for outputting a control datum stored in the selected buffer to the target circuit.
Abstract:
A method for deriving precise control over laser power of an optical pickup unit (OPU) includes: providing an analog-to-digital converter (ADC) within an automatic power calibration (APC) circuit to derive a path gain and/or a path offset from the APC circuit; and selectively performing compensation according to the gain and/or the path offset, in order to maintain precision of a relationship between the laser power and a target command utilized for controlling the laser power. An associated APC circuit comprising an ADC and at least one compensation module is further provided. The ADC is utilized for deriving a path gain and/or a path offset from the APC circuit. The compensation module is utilized for selectively performing compensation according to the path gain and/or the path offset, in order to control the laser power by a target command.
Abstract:
A material conveying system without dust rising, having a plurality of trays; a transmission mechanism, for carrying the trays and transmitting the trays in motion; and a controller, for controlling the transmission mechanism, is characterized in that the material conveying system without dust rising further has a tank, which carries a liquid, where the transmission mechanism is immersed so that the dust resulting from abrasion of the transmission mechanism cannot float in the air.
Abstract:
The present invention provides an apparatus for adhering electronic devices comprising an electronic device, an adhesive, and a circuit board. Because the conventional circuit board includes air bubbles, these air bubbles are heated to the expansion state so as to forming the illness structure with holes. The circuit board of the present invention has an improved structure to improve the speed of filling and forming shape of the adhesive disposed at the bottom of the electronic device, so that when the electronic device is placed on the circuit board with the edges thereof coated with the adhesive, it can be adhered on the circuit board quickly while it can render the air in the interlayer between the electronic device and the circuit board exhausted through the hole. In addition, the present invention provides a method for adhering electronic devices, in order for the electronic device to be adhered on the circuit board quickly.
Abstract:
A method of fabricating identifiable flexible printed circuit board (PCB) disposed to an inkjet cartridge includes, providing a flexible substrate having a first surface. A conductive layer is formed on the first surface. A printing ink layer is coated over the first surface. The printing ink layer is exposed and developed to uncover parts of the conductive layer and form at least one identifiable area on the printing ink layer.
Abstract:
A method for aligning a lens of a camera with a sensor of the camera. The method includes positioning a test object a predetermined distance away from the lens of the camera, photographing the test object with the camera to produce image data, and outputting the image data from the camera to a calibration device. The method also includes dividing the image data into a plurality of sections, calculating resolution data for at least two sections of the image data, calculating position parameters of the lens according to the resolution data, and correcting alignment of the lens with respect to the sensor according to the position parameters.
Abstract:
A digital delaying device for delaying an input signal includes a ring oscillator, a calibration unit, and at least one delay number calculation unit and delay channel. The ring oscillator includes loop-connected delay cells for outputting an oscillation clock. The calibration unit receives a reference clock and the oscillation clock and calculates a pulse number of the oscillation clock corresponding to each reference clock period. The pulse number serves as a period reference pulse number. The calculation unit receives the pulse number and a signal delay value, calculates a signal delay number corresponding to the signal delay value according to the pulse number, and outputs a selection signal. The delay channel includes a multiplexer and cascaded delay cells, which receives an input signal and generates delay signals with different delay timings. The multiplexer selects and outputs one of the delay signals as an output signal according to the selection signal.