Abstract:
A control system for a plant is provided. This control system can control the plant more stably, when the model parameters of the controlled object model which are obtained by modeling the plant, which is a controlled object, are identified and the sliding mode control is performed using the identified model parameters. The model parameter identifier (22) calculates a model parameter vector (θ) by adding an updating vector (dθ) to a reference vector (θbase) of the model parameter. The updating vector (dθ) is corrected by multiplying a past value of at least one element of the updating vector by a predetermined value which is greater than “0” and less than “1”. The model parameter vector (θ) is calculated by adding the corrected updating vector (dθ) to the reference vector (θbase).
Abstract:
A control system which is capable of enhancing the accuracy of control, when the output of a controlled object is controlled with a control algorithm to which is applied a modulation algorithm based on one of a Δ modulation algorithm, a ΔΣ modulation algorithm, and a ΣΔ modulation algorithm, even if the absolute value of an input value to the modulation algorithm continues to be larger than 1 for a long time. The control system 1 for controlling the cam phase Cain of an intake cam 5 includes an ECU 2. The ECU 2 calculates a limited value deviation r2 for control of the cam phase Cain by equations (1) to (10), modulates the limited value deviation r2 with an algorithm expressed by equations (11) to (13) based on the ΔΣ modulation algorithm to thereby calculate a modulation output u″ as a predetermined value ±R (R>|r2|), and calculates a control output Vcain to the electromagnetic variable cam phase mechanism 30 based on the predetermined value ±R (steps 5 and 6).
Abstract:
A control system for a plant, having an identifier and a controller. The identifier identifies model parameters of a controlled object model which is obtained by modeling the plant. The controller calculates a control input to the plant so that an output from the plant coincides with a control target value, using the identified model parameters. The controller calculates a self-tuning control input, using the model parameters identified by the identifier. The controller further calculates a damping control input according to the rate of change in the output from the plant or the rate of change in a deviation between the output from the plant and the control target value. The controller calculates the control input to the plant as a sum of the self-tuning control input and the damping control input.
Abstract:
A control apparatus is provided for ensuring a high-level control resolution and a high control accuracy even when a plant exhibits strong and varying non-linear characteristics with a varying sensitivity of a control amount to a control input. The control apparatus for controlling a cam phase through a cam phase varying mechanism comprises an ECU. The ECU calculates an SLD control input for controlling a cam phase to converge to a target cam phase in accordance with a predetermined control algorithm, and calculate a control input to the cam phase varying mechanism by modulating the SLD control input in accordance with a predetermined modulation algorithm. The ECU also sets an amplitude setting value in accordance with the cam phase, an engine rotational speed, an oil pressure, and an oil temperature.
Abstract:
A control apparatus for an internal combustion engine for controlling the engine while compensating for a deviation of an intake air amount from the proper value, caused by the thermal expansion and contraction of a variable intake mechanism thereof, which makes it possible to improve the control accuracy, make the engine compact in size, increase the degree of freedom of design, and reduce manufacturing costs. An ECU of an control apparatus of the engine calculates an FF correction value based on a thermodynamic model of a variable valve lift mechanism, calculates an FB correction value according to an air-fuel ratio correction coefficient and an actual air-fuel ratio, calculates a lift correction value as the difference between the FF correction value and the FB correction value or as a value of the FF correction value, corrects the valve lift by the lift correction value to thereby calculate a corrected valve lift, and carries out air-fuel ratio control and ignition timing control according to the corrected valve lift.
Abstract:
There are provided a control device, a control method, a control unit, and an engine control unit, which are capable of controlling a controlled object with relatively large phase delay and dead time, while attaining elimination of lag in control timing between the input and output of the controlled object and improvement of control accuracy at the same time. A state predictor calculates a deviation (output deviation) between an output from an oxygen concentration sensor and a predetermined target value at a predetermined deviation calculation period. Then, a DSM controller calculates a target air-fuel ratio for converging the output from the oxygen concentration sensor to the predetermined target value, according to the calculated deviation, based on any one of a Δ modulation algorithm, a ΔΣ modulation algorithm, and a ΣΔ modulation algorithm at a predetermined calculation period shorter than the predetermined deviation calculation period.
Abstract:
A controller which is capable of improving the resolution and accuracy of control even when controlling a plant including a control region in which nonlinearities are temporarily very strongly exhibited and a control region in which the nonlinearities are hardly exhibited. A controller 1 which controls fuel pressure Pf of a fuel supply system 10 includes an ECU 2. The ECU 2 sets a target fuel pressure Pf_cmd, calculates a first control input Rsld for causing the fuel pressure Pf to converge to the target fuel pressure Pf-cmd, with equations (1) to (6), modulates the first control input Rsld with equations (11) to (31) to thereby calculate a second control input Udsm, and depending on whether or not during fuel-cut operation or pressure decreasing control, selects one of the first and second control inputs Rsld and Udsm as the control input Upf.
Abstract:
There are provided an artificial joint device that can realize an artificial limb enabling twisting motion without a drive source, and when with the drive source, reduce the size and costs of the device, and a parallel linkage that can realize the device. The linkage connects a foot portion and a mounting plate spaced from each other. A fixed link has one end fixed to the plate, and the other end connected to the foot portion via a ball joint, making the angle of the fixed link relative to the foot portion changeable in any direction. Expansible links extend between the foot portion and the plate in an expansible/contractible manner and each have opposite ends connected to the plate and the foot portion via respective upper and lower ball joints, making respective angles thereof relative to the foot portion and the plate changeable in any direction.
Abstract:
A control for avoiding interference between a valve and a piston of an engine is provided. The engine has a variable lift mechanism that is capable of changing a lift amount of the valve and a variable phase mechanism that is capable of changing a phase of the valve. A predicted value of the phase is calculated. A first determination of whether or not the predicted value has exceeded a first predetermined value is made. If it is determined that the predicted value has exceeded the first predetermined value, at least one of the lift amount and the phase is changed to avoid the interference between the valve and the piston. By using the predicted value, the interference can be avoided without delay.
Abstract:
A controller for a contact mechanism for preventing a lack of a pressing force applied from a contacting member to a contacted member when determining a control input to an actuator moving the contacting member by means of a position control. The controller comprises: a sliding mode controller 53 for determining a control input Vsc to a shift motor so as to increase an output of the shift motor along with an increase in a difference between a target position Psc_cmd and an actual position Psc of a coupling sleeve to eliminate the difference; an offset value determination section 55 for determining an offset value Ufb for a target position of the coupling sleeve set by a target position scheduler so that the control input Vsc to the shift motor matches a target control input preset so that the pressing force applied from the coupling sleeve to a synchronizer ring is at a predetermined level when detecting a contact between the coupling sleeve and the synchronizer ring; and an adder 56 for adding the offset value Ufb to the target position.