Abstract:
In one embodiment, a system for imaging an acquisition target or an overlay or alignment semiconductor target is disclosed. The system includes a beam generator for directing at least one incident beam having a wavelength λ towards a periodic target having structures with a specific pitch p. A plurality of output beams are scattered from the periodic target in response to the at least one incident beam. The system further includes an imaging lens system for passing only a first and a second output beam from the target. The imaging system is adapted such that the angular separation between the captured beams, λ, and the pitch are selected to cause the first and second output beams to form a sinusoidal image. The system also includes a sensor for imaging the sinusoidal image or images, and a controller for causing the beam generator to direct the at least one incident beam towards the periodic target or targets, and for analyzing the sinusoidal image or images. In one application the detector detects a sinusoidal image of an acquisition target with the same pitch as the designed target and the controller analyzes the pitch of the sinusoidal image compared to design data to determine whether the target has been successfully acquired. In a second application a first and second periodic target that each have a specific pitch p are imaged so that the detector detects a first sinusoidal image of the first target and a second sinusoidal image of the second target and the controller analyzes the first and second sinusoidal image to determine whether the first and second targets have an overlay or alignment error.
Abstract:
An integrated interferometric and intensity based microscopic inspection system inspects semiconductor samples. A switchable illumination module provides illumination switchable between interferometric inspection and intensity based microscopic inspection modes. Complex field information is generated from interference image signals received at a sensor. Intensity based signals are used to perform the microscopic inspection. The system includes at least one illumination source for generating an illumination beam and an integrated interferometric microscope module for splitting the illumination beam into a test beam directed to the semiconductor sample and a reference beam directed to a tilted reference mirror. The beams are combined to generate an interference image at an image sensor. The tilted reference mirror is tilted with respect to the reference beam that is incident on the mirror to thereby generate fringes in the interference image. The system also includes an image sensor for acquiring the interference image from the inteferometric microscope module and intensity signals from the microscopic inspection image.
Abstract:
Disclosed is an apparatus for illuminating a sample. In one embodiment, this apparatus includes a laser for outputting an incident laser beam towards a sample and a first diffractive element having a plurality of diffraction pattern portions. The first diffractive element is movable so that each of its diffraction pattern portions can be selectively positioned in the incident beam's path and the diffraction pattern portions of the first diffractive element are designed to cause the incident beam to have different spatial illumination profiles at a pupil plane of the incident beam while reducing effects caused by the incident beam's coherence. The apparatus further includes an illumination profile element configured to spatially distribute light at an illumination plane of the incident beam and a plurality of illumination optical elements for directing the incident beam towards the sample. In a specific implementation, each of the first diffractive element's diffractive pattern portions is an annular section that is selectively positionable in the incident beam's path and the first diffractive element is rotatable so as to position different cells of its selected annular section into the incident beam's path to thereby reduce effects caused by the incident beam's coherence.
Abstract:
An improved voltage contrast test structure is disclosed. In general terms, the test structure can be fabricated in a single photolithography step or with a single reticle or mask. The test structure includes substructures which are designed to have a particular voltage potential pattern during a voltage contrast inspection. For example, when an electron beam is scanned across the test structure, an expected pattern of intensities are produced and imaged as a result of the expected voltage potentials of the test structure. However, when there is an unexpected pattern of voltage potentials present during the voltage contrast inspection, this indicates that a defect is present within the test structure. To produce different voltage potentials, a first set of substructures are coupled to a relatively large conductive structure, such as a large conductive pad, so that the first set of substructures charges more slowly than a second set of substructures that are not coupled to the relatively large conductive structure. Mechanisms for fabricating such a test structure are also disclosed. Additionally, searching mechanisms for quickly locating defects within such a test structure, as well as other types of voltage contrast structures, during a voltage contrast inspection are also provided.
Abstract:
A film stack adapted to enable optical readings on a film stack. Multiple gratings layers are disposed within transparent layers, and include a topmost grating layer, a bottommost grating layer, and at least one intervening grating layer. Each one of the grating layers have a pitch between substantially opaque portions of the grating layer and substantially transparent portions of the grating layer. The substantially opaque portions of the bottommost grating layer are laterally disposed at an offset from the substantially opaque portions of the topmost grating layer. The substantially opaque portions of the at least one intervening grating layer are laterally disposed between the opaque portions of the bottommost grating layer and the substantially opaque portions of the topmost grating layer.
Abstract:
An inspection system for detecting anomalies on a substrate. The inspection system has a sensor array for generating image data. A first high speed network is coupled to the sensor array and receives and communicates the image data. An array of process nodes is coupled to the first high speed network, and receives and processes the image data to produce anomaly reports. Each of the process nodes has an amount of memory that is sufficient to receive image data representing a plurality of dice on an integrated circuit wafer, and each of the process nodes performs analysis on the plurality of dice. Each process node has an interface card coupled to the first high speed network, that receives the image data from the first high speed network and formats the image data according to a high speed interface bus protocol. A high speed interface bus is coupled to the interface card, receives the image data from the interface card. A computer is coupled to the high speed interface bus, and receives the image data from the high speed interface bus and processes the image data according to an algorithm, to produce the anomaly report. A second high speed network is coupled to the process nodes, and receives the anomaly reports from the process nodes. A job manager is coupled to the second high speed network, and receives the anomaly reports from the process nodes and sends information to the process nodes to coordinate the processing of the image data in the array of process nodes.
Abstract:
Techniques that use the design databases used in each of the expose/etch steps during construction of phase shift masks are described. A model or reference image is rendered, accounting for systematic variations, from the design databases to represent what a layer of the PSM should look like after processing. The reference image is compared to an optically acquired image of a specimen phase shift mask to find defects. The technique of the present invention can be used to inspect EAPSM, APSM and tritone masks. The technique inspects all layers in one pass and is therefore more efficient.
Abstract:
An inspection system for detecting anomalies on a substrate. A first network is coupled to a sensor array and communicates image data. Process nodes are coupled to the first network, and processes the data to produce reports. Each process node has an interface card that formats the data for a high speed interface bus that is coupled to the interface card. A computer receives and processes the data to produce the anomaly report. A second network receives the anomaly reports from the process nodes. A job manager is coupled to the second network, and receives the anomaly reports from the process nodes and sends information to the process nodes to coordinate the processing of the data in the process nodes.
Abstract:
A method of improving stability for CD-SEM measurements of photoresist, in particular 193 nm photoresist, and of reducing shrinkage of 193 nm photoresist during CD-SEM measurements.The photoresist is exposed to a dose of electrons or other stabilizing beam prior to or during CD measurement. One embodiment of the invention includes multiplexing of the SEM electron beam.
Abstract:
A system for performing single wavelength ellipsometry (SWE) on a thin film on a multi-layer substrate such as silicon-on-insulator (SOI) applies a measurement beam having an absorption distance less than the thickness of the superficial layer of the multi-layer substrate. For example, for an SOI substrate, the measurement beam is selected to have a wavelength that results in an absorption distance that is less than the superficial silicon layer thickness. The system can include a cleaning laser to provide concurrent cleaning to enhance measurement accuracy without negatively impacting throughput. The measurement beam source can be configured to provide a measurement beam at one wavelength and a cleaning beam at a longer wavelength, so that the absorption depth of the measurement beam is less than the superficial layer thickness while the absorption depth of the cleaning beam is greater than the superficial layer thickness.