Imaging device and electronic device

    公开(公告)号:US12041800B2

    公开(公告)日:2024-07-16

    申请号:US17777384

    申请日:2020-11-11

    IPC分类号: H10K39/32

    CPC分类号: H10K39/32

    摘要: An imaging device having a color imaging function and an infrared imaging function is provided. The imaging device has a structure in which a first photoelectric conversion device and a second photoelectric conversion device are stacked, and the second photoelectric conversion device generates electric charge by absorbing infrared light and transmits light having a wavelength of a higher energy than that of infrared light. The first photoelectric conversion device is positioned to overlap with the second photoelectric conversion device, and generates electric charge by absorbing light (visible light) passing through the second photoelectric conversion device. Thus, a subpixel for color imaging and a subpixel for infrared imaging can be positioned to overlap with each other, and an infrared imaging function can be added without a decrease in the definition of color imaging.

    Imaging device and electronic device

    公开(公告)号:US12041366B2

    公开(公告)日:2024-07-16

    申请号:US17911193

    申请日:2021-03-15

    摘要: An imaging device having a function of processing an image is provided. The imaging device has an additional function such as image processing, can hold analog data obtained by an image capturing operation in a pixel, and can extract data obtained by multiplying the analog data by a predetermined weight coefficient. Difference data between adjacent light-receiving devices can be obtained in a pixel, and data on luminance gradient can be obtained. When the data is taken in a neural network or the like, inference of distance data or the like can be performed. Since enormous volume of image data in the state of analog data can be held in pixels, processing can be performed efficiently.

    DISPLAY APPARATUS, DISPLAY MODULE, ELECTRONIC DEVICE, AND METHOD OF MANUFACTURING DISPLAY APPARATUS

    公开(公告)号:US20240237425A9

    公开(公告)日:2024-07-11

    申请号:US18548186

    申请日:2022-02-24

    摘要: A high-definition and high-resolution display apparatus is provided. A conductive film, a first layer, and a first sacrificial layer are formed. The first layer and the first sacrificial layer are processed to expose part of the conductive film. A second layer and a second sacrificial layer are formed over the first sacrificial layer and the conductive film. The second layer and the second sacrificial layer are processed to expose part of the conductive film. The conductive film is processed to form a first pixel electrode overlapping with the first sacrificial layer and a second pixel electrode overlapping with the second sacrificial layer. Two insulating films covering at least a side surface of the first pixel electrode, a side surface of the second pixel electrode, a side surface of the first layer, a side surface of the second layer, a side surface and a top surface of the first sacrificial layer, and a side surface and atop surface of the second sacrificial layer are formed. The two insulating films are processed to form a sidewall covering at least the side surface of the first pixel electrode and the side surface of the first layer. The first sacrificial layer and the second sacrificial layer are removed. A common electrode is formed over the first layer and the second layer.

    ELECTRONIC DEVICE
    86.
    发明公开
    ELECTRONIC DEVICE 审中-公开

    公开(公告)号:US20240237374A9

    公开(公告)日:2024-07-11

    申请号:US18278199

    申请日:2022-02-24

    摘要: An electronic device having an eye tracking function is provided. The electronic device includes a display device and an optical system. The display device includes a first light-emitting element, a second light-emitting element, a sensor portion, and a driver circuit portion. The sensor portion includes a light-receiving element. The first light-emitting element has a function of emitting infrared light or visible light. The second light-emitting element has a function of emitting light of a color different from that of light emitted from the first light-emitting element. When the first light-emitting element emits infrared light, the light-receiving element has a function of detecting the infrared light that is emitted from the first light-emitting element and reflected by an eyeball of a user. When the first light-emitting element emits visible light, the light-receiving element has a function of detecting the visible light that is emitted from the first light-emitting element and reflected by the eyeball of the user. The first light-emitting element and the second light-emitting element are placed in one layer. The layer where the first light-emitting element and the second light-emitting element are positioned overlaps with the sensor portion.

    DISPLAY APPARATUS
    90.
    发明公开
    DISPLAY APPARATUS 审中-公开

    公开(公告)号:US20240224698A1

    公开(公告)日:2024-07-04

    申请号:US18557142

    申请日:2022-04-15

    IPC分类号: H10K59/38

    CPC分类号: H10K59/38

    摘要: A high-resolution or high-definition display apparatus is provided. The display apparatus includes a first light-emitting element, a second light-emitting element, a first color filter, and a second color filter; the first light-emitting element and the second light-emitting element each have the capability to emit white light; the first color filter and the second color filter have the capability to transmit light of the respective colors in light emitted from the light-emitting elements; the first light-emitting element includes a first pixel electrode, a first EL layer over the first pixel electrode, and a common electrode over the first EL layer; the second light-emitting element includes a second pixel electrode over an insulating layer, a second EL layer over the second pixel electrode, and the common electrode over the second EL layer; the first light-emitting element includes a region where an angle between the side surface of the first pixel electrode and the bottom surface of the first pixel electrode is greater than or equal to 60° and less than or equal to 140°; and the ratio (T1/T2) of a thickness T1 of the first pixel electrode to a thickness T2 of the first EL layer is greater than or equal to 0.5.