Abstract:
The purpose of the present invention is to minimize ozone production while increasing the production of an active species. The plasma generating device (100) comprises: a pair of electrodes (21, 22) in which dielectric films (21a, 21b) are disposed on at least one opposing face; voltage application means (4) for applying a pulse voltage across the electrodes (21, 22) to bring about a plasma discharger; and fluid circulation holes (21b, 22b) that are disposed in locations corresponding to the electrodes (21, 22), respectively, and that are configured to pass entirely therethrough. The plasma generating device is also configured such that a fluid passing through the fluid circulation holes (21b, 22b) comes into contact with the plasma, generating ions or radicals, wherein the voltage applying means (4) varies the peak value and/or the pulse width of the pulse voltage applied across the electrodes (21, 22).
Abstract:
An electrode structural body includes a first electrode and a second electrode, and further includes a first retainer and a second retainer for fixing the first electrode and the second electrode. The first electrode and the second electrode are separated from each other, their axial directions being parallel to each other. The first electrode contains a first insulating body having a first hollow portion and a first conducting body located in the first hollow portion. The second electrode contains a second insulating body having a second hollow portion and a second conducting body located in the second hollow portion. At least in the first electrode, at least one end surface of the first conducting body is positioned inside the first hollow portion at a distance from one end surface of the first insulating body.
Abstract:
The present invention relates to a non-thermal plasma jet device as spatial ionization source for ambient mass spectrometry of the type which allows a free adjustment of the geometry of the plasma beam, wherein the device comprises a double dielectric barrier probe of non-thermal plasma or NTP probe, which generates a non-thermal plasma jet; a high voltage and high frequency transformer circuit that connects an outer electrode through which it is possible to perform a discharge for the ionization of a gas which produces plasma, and wherein said plasma generator circuit is in turn connected to a source of AC power; an inner electrode which is grounded and allows to perform the discharge for the production of plasma; a storage tank of a gas serving as discharge gas; a test sample on which the non-thermal plasma jet is applied; and a ion transfer adapter to direct the ions produced by the device from the vacuum-free sample into a mass analyzer. The device described allows to directly analyzing live samples (plants, for example) without causing any damage to them.
Abstract:
A treated object modifying apparatus includes a plasma-treating unit that includes a first electrode unit, a second electrode unit, and a dielectric that is interposed between the first electrode unit and the second electrode unit, and that plasma-treats a treated object positioned between the first electrode unit and the dielectric; and a controlling unit that controls the plasma-treating unit so that the amount of plasma energy delivered to any one of sides of the treated object in a duplex treatment that are performed with the one side of the treated object facing the first electrode unit and with the other side of the treated object facing the first electrode unit is different from the amount of plasma energy delivered to any one of the sides of the treated object in a simplex treatment that is performed with the one side of the treated object facing the first electrode unit.
Abstract:
The invention relates to a surface dielectric barrier discharge plasma unit. The unit comprises a solid dielectric structure provided with an interior space wherein an interior electrode is arranged. Further, the unit comprises a further electrode for generating in concert with the interior electrode a surface dielectric barrier discharge plasma. The unit is also provided with a gas flow path along a surface of the structure.
Abstract:
Provided is a dielectric barrier discharge-type electrode structure for generating plasma. The electrode structure, according to the present invention, comprises: an upper conductive body electrode and a lower conductive body electrode; at least one conductive body electrode protrusion portion, which is formed on at least one surface of the upper conductive body electrode and/or the lower conductive body electrode; a dielectric layer which is formed on at least one of the inner surfaces of the upper conductive body electrode and the lower conductive body electrode that face each other, so as to have a substantially uniform thickness; and a specific gap (d) which is formed between the upper and lower conductive body electrodes and the dielectric layer, or between dielectric layers, due to the protruding effect of the conductive body electrode protrusion portion when the upper conductive body electrode and the lower conductive body electrodes come into close contact, wherein the plasma is generated by applying a pulse power or an alternating power to the upper conductive body electrode and the lower conductive body electrode.
Abstract:
There is provided a plasma generation device capable of suppressing arc discharge in which discharge is localized to cause a high temperature, and allowing atmospheric discharge plasma to be stably generated with a high generation efficiency in a low temperature at about a room temperature without being spatially biased. The plasma generation device arranged with a plurality of electrodes facing each other includes a discharge position control unit, which is arranged between each of the plurality of electrodes, and is formed by containing an inverse characteristic material composed of a fluid having polarizability and a property that dielectric constant decreases with an increase in temperature, in a container formed of a dielectric material, wherein the inverse characteristic material is spaced apart from each of the plurality of electrodes.
Abstract:
An apparatus for and methods of repairing and manufacturing integrated circuits using the apparatus. The apparatus, comprising: a vacuum chamber containing: a movable stage configured to hold a substrate; an inspection and analysis probe; a heat source; a gas injector; and a gas manifold connecting multiple gas sources to the gas injector.
Abstract:
The present disclosure provides a liquid treatment device, a liquid treatment method, and a plasma treatment liquid each capable of efficiently generating plasma and treating a liquid in a short time period. A liquid treatment device according to the present disclosure includes a first electrode, a second electrode disposed in a liquid to be treated, an insulator disposed around the first electrode with a space between the first electrode and the insulator, the insulator has an opening portion in a position in contact with the liquid to be treated, a power supply that applies voltage between the first electrode and the second electrode, and a supply device supplying a liquid to the space before the power source applies the voltage.
Abstract:
Exemplary embodiments of shape conforming dielectric barrier discharge (DBD) plasma generators are disclosed herein. One exemplary embodiment includes a flexible pad and a plurality of electrodes located in the pad within close proximity of each other, and a flexible dielectric barrier surrounding the plurality of electrodes and separating the plurality of electrodes from each other. Wherein when a high voltage pulse is applied to one or more of the plurality of electrodes, plasma is produced between a surface of the flexible pad and a portion of the body in close proximity to the flexible pad.